J 2003

Density estimate and its application to analysis of temperature series

HOROVÁ, Ivanka, Jiří ZELINKA, Rudolf BRÁZDIL and Marie BUDÍKOVÁ

Basic information

Original name

Density estimate and its application to analysis of temperature series

Authors

HOROVÁ, Ivanka (203 Czech Republic, guarantor), Jiří ZELINKA (203 Czech Republic), Rudolf BRÁZDIL (203 Czech Republic) and Marie BUDÍKOVÁ (203 Czech Republic)

Edition

Environmetrics, Chichester, John Wiley & Sons, 2003, 1180-4009

Other information

Language

English

Type of outcome

Článek v odborném periodiku

Field of Study

10101 Pure mathematics

Country of publisher

United Kingdom of Great Britain and Northern Ireland

Confidentiality degree

není předmětem státního či obchodního tajemství

References:

Odkaz na text článku na internetových stránkách časopisu Environmetrics

Impact factor

Impact factor: 0.598

RIV identification code

RIV/00216224:14310/03:00007953

Organization unit

Faculty of Science

UT WoS

000180856800007

Keywords in English

kernel estimate; visualization; air temperature; Prague-Klementinum; Central England

Tags

Air temperature, Central England, kernel estimate, Prague-Klementinum, visualization
Změněno: 22/6/2009 17:09, RNDr. Marie Budíková, Dr.

Abstract

V originále

Nonparametric density estimates attempt to reconstruct the probability density from which a random sample has come, using the sample values and as few assumptions as possible about the density. These methods are smoothing operations on the sample distribution. Methods of kernel estimates represent one of the most effective nonparametric methods. These methods are simple to understand, easy to implement and they have very good mathematical properties. We employed the automatic procedure for the selection of the bandwidth, the kernel and the order of the kernel. This procedure is used for analysis of air temperature fluctuations for series of Central England and Prague-Klementinum in the periods 1661-2000 and 1771-2000, respectively. Graphical representation of the family of estimated densities in three dimensional space provide a better explanation of the long-term trends in temperature distribution of both series.

Links

GA205/01/1067, research and development project
Name: Meteorologické extrémy a jejich dopady v Českých zemích od 16. století
Investor: Czech Science Foundation, Meteorological extremes and their impacts in the Czech Lands since the 16th century
MSM 143100001, plan (intention)
Name: Funkcionální diferenciální rovnice a matematicko-statistické modely
Investor: Ministry of Education, Youth and Sports of the CR, Functional-differential equations and mathematical-statistical models
Displayed: 11/11/2024 10:18