Detailed Information on Publication Record
2002
Optimal Choice of Nonparametric Estimates of a Density and of its Derivatives
HOROVÁ, Ivanka, Philippe VIEU and Jiří ZELINKABasic information
Original name
Optimal Choice of Nonparametric Estimates of a Density and of its Derivatives
Name in Czech
Optimální volba parametrů pro jádrové odhady hustoty a jijích derivací
Authors
HOROVÁ, Ivanka (203 Czech Republic, guarantor), Philippe VIEU (250 France) and Jiří ZELINKA (203 Czech Republic)
Edition
Statistics & Decisions, Mnichov, R. Oldenbourg Verlage, 2002, 0721-2631
Other information
Language
English
Type of outcome
Článek v odborném periodiku
Field of Study
10101 Pure mathematics
Country of publisher
Germany
Confidentiality degree
není předmětem státního či obchodního tajemství
RIV identification code
RIV/00216224:14310/02:00007553
Organization unit
Faculty of Science
Keywords (in Czech)
asymptpticky optimální odhad, vyhlazovací parametr, kanonický faktor, odhad hustoty
Keywords in English
asymptotic optimal estimate; bandwidth choice; canonical kernel; density estimates; derivatives estimation; kernel order choice; polynomial kernels
Tags
Tags
International impact, Reviewed
Změněno: 25/3/2010 16:52, prof. RNDr. Ivanka Horová, CSc.
Abstract
V originále
Kernel smoothers are one of the most popular nonparametric functional estimates. These smoothers depend on three parameters: the bandwidth which controls the smoothness of the estimate, the form of the kernel weight function and the order of the kernel which is related to the number of derivatives assumed to exist in the nonparametric model. Because these three problems are closely related one to each other it is necessary to address them all together. In this paper we concentrate on the estimation of a density function and of its derivatives. We propose to use polynomial kernels and we construct data-driven choices for the bandwidth and the order of the kernel. We show a~theorem stating that this method for solving simultaneously the three selection problems mentioned before is asymptotically optimal in terms of Mean Integrated Squared Errors. As a by-product of our result we show an asymptotic optimality property for a~new bandwidth selector for density derivative which is quite appealing because of the simplicity of its implementation.
Links
MSM 143100001, plan (intention) |
|