V originále
Similarity join in distance spaces constrained by the metric postulates is the necessary complement of more famous similarity range and the nearest neighbors search primitives. However, the quadratic computational complexity of similarity joins prevents from applications on large data collections. We first study the underlying principles of such joins and suggest three categories of implementation strategies based on filtering, partitioning, or similarity range searching. Then we study an application of the D-index to implement the most promising alternative of range searching. Though also this approach is not able to eliminate the intrinsic quadratic complexity of similarity joins, significant performance improvements are confirmed by experiments.
Česky
Článek se zabývá problematikou podobnostního spojení, které je doplňkem ke známějším rozsahovým dotazům a dotazům na nejbližší sousedy. Navrhujeme tři kategorie algoritmů pro vyhodnocování podobnostních spojení a studujeme možnosti využití indexové struktury D-Index.