D 2003

Searching for Significant Word Associations in Text Documents Using Genetic Algorithms

ŽIŽKA, Jan, Michal ŠRÉDL and Aleš BOUREK

Basic information

Original name

Searching for Significant Word Associations in Text Documents Using Genetic Algorithms

Authors

ŽIŽKA, Jan (203 Czech Republic, guarantor), Michal ŠRÉDL (203 Czech Republic) and Aleš BOUREK (203 Czech Republic)

Edition

Berlin Heidelberg New York, Computional Linguistics and Intelligent Text Processing, p. 584-587, 4 pp. 2003

Publisher

Springer Verlag

Other information

Language

English

Type of outcome

Stať ve sborníku

Field of Study

10201 Computer sciences, information science, bioinformatics

Country of publisher

Mexico

Confidentiality degree

není předmětem státního či obchodního tajemství

RIV identification code

RIV/00216224:14330/03:00009148

Organization unit

Faculty of Informatics

ISBN

3-540-00532-3

UT WoS

000182492300064

Keywords in English

machine learning; text document processing; genetic algorithms; naive Bayes method
Změněno: 8/9/2004 16:37, doc. Ing. Jan Žižka, CSc.

Abstract

V originále

The paper describes experiments that used Genetic Algorithms for looking for important word assocoations (phrases) in unstructured text documents obtained from the Internet in the area of a specialized medicine branch. Genetic alforithms can evolve sets of word associations with assigned significance weights from the document categorization point of view (relevant and irrelevant documents). The categorization is similarly reliable like the naive Bayes classification based on individual words. In addition, genetic algorithms provided phrases consisting of one, two, and three words. The phrases were quite meaningful from the human point of view.

Links

MSM 143300003, plan (intention)
Name: Interakce člověka s počítačem, dialogové systémy a asistivní technologie
Investor: Ministry of Education, Youth and Sports of the CR, Human-computer interaction, dialog systems and assistive technologies