J 2003

Phases of linear difference equations and symplectic systems

DOŠLÁ, Zuzana and Denisa ŠKRABÁKOVÁ

Basic information

Original name

Phases of linear difference equations and symplectic systems

Authors

DOŠLÁ, Zuzana (203 Czech Republic, guarantor) and Denisa ŠKRABÁKOVÁ (203 Czech Republic)

Edition

Math. Bohemica, 2003, 0862-7959

Other information

Language

English

Type of outcome

Článek v odborném periodiku

Field of Study

10101 Pure mathematics

Country of publisher

Czech Republic

Confidentiality degree

není předmětem státního či obchodního tajemství

RIV identification code

RIV/00216224:14310/03:00008444

Organization unit

Faculty of Science

Keywords in English

Symplectic system; Stur-Liouville difference equation; phase; trigonometric transformation
Změněno: 28/12/2003 12:24, prof. RNDr. Zuzana Došlá, DSc.

Abstract

V originále

The concept of the phase of symplectic systems is introduced as the discrete analogy of the Boruvka concept of the phase of second order linear differential equations. Oscillation and nonoscillation of difference equations and systems are investigated in connections with phases and trigonometric systems.

Links

GA201/01/0079, research and development project
Name: Kvalitativní teorie řešení diferenčních rovnic
Investor: Czech Science Foundation, Qualitative theory of solutions of difference equations
GA201/99/0295, research and development project
Name: Kvalitativní teorie diferenciálních rovnic
Investor: Czech Science Foundation, Qualitative theory of differential equations