J 2003

Some stabilized bandwidth selectors for nonparametric regression

KOLÁČEK, Jan

Basic information

Original name

Some stabilized bandwidth selectors for nonparametric regression

Name in Czech

Stabilizační metody pro hledání optimální šířky okna pro neparametrickou regresi

Authors

KOLÁČEK, Jan (203 Czech Republic, guarantor, belonging to the institution)

Edition

Journal of Electrical Engineering, Bratislava, Slovak University of Technology, 2003, 1335-3632

Other information

Language

English

Type of outcome

Článek v odborném periodiku

Field of Study

10103 Statistics and probability

Country of publisher

Slovakia

Confidentiality degree

není předmětem státního či obchodního tajemství

RIV identification code

RIV/00216224:14310/03:00021253

Organization unit

Faculty of Science

Keywords in English

Kernel regression; bandwidth selector; Nadaraya - Watson estimators; periodogram

Tags

International impact, Reviewed
Změněno: 12/11/2013 15:47, doc. Mgr. Jan Koláček, Ph.D.

Abstract

V originále

The problem of bandwidth selection for nonparametric kernel regression is considered. It is well recognized that the classical bandwidth selectors are subject to large sample variation. Due to the large variation, these selectors might not be very useful in practice. Most of bandwidth selectors are based on the residual sum of squares (RSS), the source of the variation is pointed out. The observation leads to consideration of a procedure which stabilizes the RSS by modifying the periodogram of the observations. We will follow the Nadaraya - Watson estimators especially. In a simulation study, it is confirmed that the stabilized bandwidth selectors perform much better than the classical selectors.

In Czech

Práce se zabývá některými metodami pro výběr optimální šířky okna při neparametrické regresi.

Links

MSM 143100001, plan (intention)
Name: Funkcionální diferenciální rovnice a matematicko-statistické modely
Investor: Ministry of Education, Youth and Sports of the CR, Functional-differential equations and mathematical-statistical models