Detailed Information on Publication Record
2005
NMR Studies of Purines
MAREK, Radek and Vladimír SKLENÁŘBasic information
Original name
NMR Studies of Purines
Name in Czech
NMR studium purinů
Authors
MAREK, Radek (203 Czech Republic, guarantor, belonging to the institution) and Vladimír SKLENÁŘ (203 Czech Republic, belonging to the institution)
Edition
London, Annual Reports on NMR Spectroscopy, p. 201-242, 41 pp. 54, 2005
Publisher
Elsevier Ltd.
Other information
Language
English
Type of outcome
Kapitola resp. kapitoly v odborné knize
Field of Study
10403 Physical chemistry
Country of publisher
United Kingdom of Great Britain and Northern Ireland
Confidentiality degree
není předmětem státního či obchodního tajemství
Publication form
electronic version available online
References:
RIV identification code
RIV/00216224:14310/05:00013569
Organization unit
Faculty of Science
ISBN
0-12-505454-8
UT WoS
000228553100005
Keywords in English
NMR; purines; chemical shifts; coupling constants; tautomerism; protonation; complexation
Změněno: 25/4/2014 18:19, prof. RNDr. Radek Marek, Ph.D.
V originále
This contribution reviews applications of NMR spectroscopy in the investigation of the structure and the intra- and intermolecular interactions of purine derivatives. Purines represent a highly important class of heterocyclic compounds that are widely distributed in all living organisms, not only as constituents of nucleic acids, but also as signal molecules. Their structure, electron distribution, and proton-transfer processes determine their chemical reactivity, interactions with solvents, and, subsequently, also their biological activity and function. Along with X-ray diffraction, NMR spectroscopy represents one of the most important experimental tools for investigating molecular topology at the atomic level. In the following text, NMR methods suitable for studying the purine structure and their application to exploring samples at natural levels of the 13C and 15N isotopes are briefly reviewed. As will be shown, isotropic 13C and 15N chemical shifts, 1H-13C one- and three-bond J-coupling constants and 1H-15N one- and two-bond couplings are the commonly used characteristic parameters for NMR in the solution state. In the solid state, CP MAS spectra of powder samples provide the principal values of the chemical-shift tensors. Quantum chemical calculations on the DFT level support and explain the experimental data. Due to the extremely wide scope of the topic, no attempt is made to cover the area completely. Rather, typical examples of applications and recently published contributions in all of the areas identified above are included to provide the reader with a summary of the current efforts to increase our knowledge and understanding of the interactions at the atomic, molecular and intermolecular level in purine and its derivatives.
In Czech
Tento příspěvek shrnuje aplikace NMR spektroskopie při studiu struktury, intramolekulárních a intermolekulárních interakcí derivátů purinu.
Links
LN00A016, research and development project |
|