WIMMEROVÁ, Michaela, Edward P. MITCHELL, Martina BUDOVA, Charles SABIN, Nikola KOSTLÁNOVÁ, Stephanie PERRET, Gianluca CIOCI, Nechama GILBOA-GARBER and Anne IMBERTY. PA-IIL like lectins: a common feature of high adaptability of some opportunistic bacteria. In Chemica 43S. 2004th ed. Olomouc: Ceska spolecnost pro biochemii a molekularni biologii, 2004, p. 72-73. ISBN 80-244-0882-1.
Other formats:   BibTeX LaTeX RIS
Basic information
Original name PA-IIL like lectins: a common feature of high adaptability of some opportunistic bacteria
Name in Czech PA-IIL like lectins: a common feature of high adaptability of some opportunistic bacteria
Authors WIMMEROVÁ, Michaela (203 Czech Republic, guarantor), Edward P. MITCHELL (250 France), Martina BUDOVA (203 Czech Republic), Charles SABIN (250 France), Nikola KOSTLÁNOVÁ (203 Czech Republic), Stephanie PERRET (250 France), Gianluca CIOCI (250 France), Nechama GILBOA-GARBER (376 Israel) and Anne IMBERTY (250 France).
Edition 2004. vyd. Olomouc, Chemica 43S, p. 72-73, 2 pp. 2004.
Publisher Ceska spolecnost pro biochemii a molekularni biologii
Other information
Original language English
Type of outcome Proceedings paper
Field of Study 10600 1.6 Biological sciences
Country of publisher Czech Republic
Confidentiality degree is not subject to a state or trade secret
RIV identification code RIV/00216224:14310/04:00021355
Organization unit Faculty of Science
ISBN 80-244-0882-1
Keywords in English lectin; pathogen; saccharide
Tags lectin, pathogen, saccharide
Changed by Changed by: Mgr. Martina Pokorná, Ph.D., MBA, učo 13847. Changed: 25/7/2005 11:19.
Abstract
Enormous potential of sugar structures gives them a crucial importance in recognition and signalling events. Carbohydrate-mediated recognition plays an important role in the ability of parasitic organisms to adhere to the surface of the host cell in the first step of their invasion and infectivity. For example, Pseudomonas aeruginosa galactose- and fucose-binding lectins (PA-IL and PA-IIL) contribute to the virulence of this pathogenic bacterium, which is a major cause of morbidity and mortality in cystic fibrosis patients [1,2]. Moreover, the PA-IIL lectin displays an affinity for fucose in micromolar range, unusually high for monosaccharide binding. This characteristics is correlated to the remarkable presence of two calcium ions in the binding site of the protein [3]. Database searching in newly sequenced bacterial genomes revealed the presence of PA-IIL like proteins within a limited number of other opportunistic pathogens. All of them are soil inhabitants, are phylogenetically related and in past were usually considered as Pseudomonas spp. At the present time, PA-IIL like gene have been identified in the genomes of phytopathogen Ralstonia solanacearum and of human opportunistic pathogens Chromobacterium violaceum and Burholderia cenocepacia. The latter was found to cause life threatening pulmonary infections in cystic fibrosis patients at a mortality rate of 80% [4]. PA-IIL like proteins from R. Solanacearum (RS-IIL) and C. Violaceum (CV-IIL) have been fully characterized. RS-IIL has been purified from bacteria by affinity chromatography [4] whereas CV-IIL has been obtained in the recombinant form. The three lectins have been compared for their specificity (enzyme amplification method), their affinity for monosaccharides (isothermal titration microcalorimetry experiments) and their crystal structures. Comparison of the structures of the PA-IIL/fucose and RS-IIL/mannose complexes allow us to rationalize the basis of the unusual high specificity of both proteins for monosaccharides and the importance of three amino acid motif for fine tuning of the lectin specificity.
Abstract (in Czech)
Enormous potential of sugar structures gives them a crucial importance in recognition and signalling events. Carbohydrate-mediated recognition plays an important role in the ability of parasitic organisms to adhere to the surface of the host cell in the first step of their invasion and infectivity. For example, Pseudomonas aeruginosa galactose- and fucose-binding lectins (PA-IL and PA-IIL) contribute to the virulence of this pathogenic bacterium, which is a major cause of morbidity and mortality in cystic fibrosis patients [1,2]. Moreover, the PA-IIL lectin displays an affinity for fucose in micromolar range, unusually high for monosaccharide binding. This characteristics is correlated to the remarkable presence of two calcium ions in the binding site of the protein [3]. Database searching in newly sequenced bacterial genomes revealed the presence of PA-IIL like proteins within a limited number of other opportunistic pathogens. All of them are soil inhabitants, are phylogenetically related and in past were usually considered as Pseudomonas spp. At the present time, PA-IIL like gene have been identified in the genomes of phytopathogen Ralstonia solanacearum and of human opportunistic pathogens Chromobacterium violaceum and Burholderia cenocepacia. The latter was found to cause life threatening pulmonary infections in cystic fibrosis patients at a mortality rate of 80% [4]. PA-IIL like proteins from R. Solanacearum (RS-IIL) and C. Violaceum (CV-IIL) have been fully characterized. RS-IIL has been purified from bacteria by affinity chromatography [4] whereas CV-IIL has been obtained in the recombinant form. The three lectins have been compared for their specificity (enzyme amplification method), their affinity for monosaccharides (isothermal titration microcalorimetry experiments) and their crystal structures. Comparison of the structures of the PA-IIL/fucose and RS-IIL/mannose complexes allow us to rationalize the basis of the unusual high specificity of both proteins for monosaccharides and the importance of three amino acid motif for fine tuning of the lectin specificity.
Links
MSM 143100005, plan (intention)Name: Strukturně-funkční vztahy biomolekul a jejich role v metabolismu
Investor: Ministry of Education, Youth and Sports of the CR, Biomolecular Structure-function Relationships and their role in the Metabolism
PrintDisplayed: 3/9/2024 17:30