Detailed Information on Publication Record
2005
Bridging Separations in Matroids
HLINĚNÝ, Petr, Jim GEELEN and Geoff WHITTLEBasic information
Original name
Bridging Separations in Matroids
Name in Czech
Přemostění separací v matroidech
Authors
HLINĚNÝ, Petr (203 Czech Republic, guarantor), Jim GEELEN (36 Australia) and Geoff WHITTLE (36 Australia)
Edition
SIAM Journal on Discrete Mathematics, Philadelphia, SIAM, 2005, 0895-4801
Other information
Language
English
Type of outcome
Článek v odborném periodiku
Field of Study
10101 Pure mathematics
Country of publisher
United States of America
Confidentiality degree
není předmětem státního či obchodního tajemství
Impact factor
Impact factor: 0.885
RIV identification code
RIV/00216224:14330/05:00028918
Organization unit
Faculty of Informatics
UT WoS
000228918000018
Keywords in English
matroid; separation
Tags
Tags
International impact, Reviewed
Změněno: 24/3/2010 14:03, prof. RNDr. Petr Hliněný, Ph.D.
V originále
Let $(X_1,X_2)$ be an exact $k$--separation of a matroid $N$. If $M$ is a matroid that contains $N$ as a minor and the $k$--separation $(X_1,X_2)$ does not extend to a $k$--separation in $M$ then we say that $M$ {\em bridges} the $k$--separation $(X_1,X_2)$ in $N$. One would hope that a minor minimal bridge for $(X_1,X_2)$ would not be much larger than $N$. Unfortunately there are instances in which one can construct arbitaraily large minor minimal bridges. We restrict our attention to the class of matroids representable over a fixed finite field and show that here minor minimal bridges are bounded in size.
In Czech
Dokazujeme, že minorově minimální přemostění dané separace v konečně reprezentovaném matroidu je vždy omezeně velké.
Links
GA201/05/0050, research and development project |
|