Detailed Information on Publication Record
2005
Toward mining of spatiotemporal maximal frequent patterns
POPELÍNSKÝ, Lubomír and Jan BLAŤÁKBasic information
Original name
Toward mining of spatiotemporal maximal frequent patterns
Name in Czech
K dolování v prostorově-časových datech
Authors
POPELÍNSKÝ, Lubomír (203 Czech Republic, guarantor) and Jan BLAŤÁK (203 Czech Republic)
Edition
Porto, Proceedings of ECML/PKDD Workshop on Mining Spatio-Temporal Data (MSTD), p. 31-40, 10 pp. 2005
Publisher
UP
Other information
Language
English
Type of outcome
Stať ve sborníku
Field of Study
10201 Computer sciences, information science, bioinformatics
Country of publisher
Portugal
Confidentiality degree
není předmětem státního či obchodního tajemství
RIV identification code
RIV/00216224:14330/05:00014243
Organization unit
Faculty of Informatics
Keywords in English
data mining; spatiotemporal data
Změněno: 25/4/2006 18:11, doc. RNDr. Lubomír Popelínský, Ph.D.
V originále
We show that propositional spatiotemporal logic PSTL is a powerful tool for mining in various spatiotemporal data including environmental and medical data, keystroke dynamics data or text. We introduce a refinement operator for a fragment of $PSTL$, $ST_0$ and %, and present frequent patterns mined with RAP. describe the ILP system GRAPE for mining first-order frequent patterns in spatiotemporal data. We also show that in the classification task %the use of this refinement operator can %decrease computational cost and that the use of frequent patterns as new features result in an accuracy increase.
In Czech
We show that propositional spatiotemporal logic PSTL is a powerful tool for mining in various spatiotemporal data including environmental and medical data, keystroke dynamics data or text. We introduce a refinement operator for a fragment of $PSTL$, $ST_0$ and %, and present frequent patterns mined with RAP. describe the ILP system GRAPE for mining first-order frequent patterns in spatiotemporal data. We also show that in the classification taskthe use of frequent patterns as new features result in an accuracy increase.
Links
MSM0021622418, plan (intention) |
|