Detailed Information on Publication Record
2005
Protein Secondary Structure Prediction by Machine Learning Methods
HROZA, JiříBasic information
Original name
Protein Secondary Structure Prediction by Machine Learning Methods
Name in Czech
Rozpoznavani sekundarni struktury proteinu metodami strojoveho uceni
Authors
HROZA, Jiří (203 Czech Republic, guarantor)
Edition
Brno, Czech Republic, 1st International Summer School on Computational Biology, p. 38-43, 5 pp. 2005
Publisher
Masaryk University
Other information
Language
English
Type of outcome
Stať ve sborníku
Field of Study
10201 Computer sciences, information science, bioinformatics
Country of publisher
Czech Republic
Confidentiality degree
není předmětem státního či obchodního tajemství
RIV identification code
RIV/00216224:14330/05:00014719
Organization unit
Faculty of Informatics
ISBN
80-210-3907-8
Keywords in English
machine learning; protein; protein secondary structure prediction
Změněno: 28/4/2006 13:37, RNDr. Jiří Hroza
V originále
This paper concerns about an application of machine learning methods to a prediction of a secondary structure of an unknown protein. The aim of this study is to the compare artificial neural networks as the state of art method with decision trees and naive Bayes classifier. Detailed experiments are done on selected PDB database data. Results shows that decision trees achieving 87.4 % Q3 accuracy outperform neural networks (80.5 %). Naive Bayes classifier is unusable for this task.
In Czech
Clanek se zabyva aplikaci metod strojoveho uceni na problem predikce sekundarni struktury neznamych proteinu. Cilem je porovnat umele neuronove site, jako nejmodernejsi pouzivane metody, s rozhodovacimi stromy a naivnim Bayesovskym klasifikatorem. Podrobne experimenty jsou provadeny na vybranych datech z PDB databaze proteinu. Vysledky ukazuji, ze rozhodovaci stromy dosahuji mnohem lepsich vysledku (87.4%) nez neuronove site (80.5%). Oproti tomu naivni Bayesuv klasifikator se ukazal jako neprilis vhodny.
Links
MSM 143300003, plan (intention) |
|