FAIMON, Jiří, Jindřich ŠTELCL and Daniel SAS. Anthropogenic CO2-flux into cave atmosphere and its environmental impact: A case study in the Císařská Cave (Moravian Karst, Czech Republic). Science ot the Total Environment. Elsevier, 2006, vol. 369, 1-3, p. 231-245. ISSN 0048-9697.
Other formats:   BibTeX LaTeX RIS
Basic information
Original name Anthropogenic CO2-flux into cave atmosphere and its environmental impact: A case study in the Císařská Cave (Moravian Karst, Czech Republic)
Name in Czech Antropogenní tok CO2 do jeskynní atmosféry a jeho environmentální dopad: příležitostná studie z Císařské jeskyně (Moravský kras, ČR)
Authors FAIMON, Jiří (203 Czech Republic, guarantor, belonging to the institution), Jindřich ŠTELCL (203 Czech Republic, belonging to the institution) and Daniel SAS (203 Czech Republic).
Edition Science ot the Total Environment, Elsevier, 2006, 0048-9697.
Other information
Original language English
Type of outcome Article in a journal
Field of Study Geochemistry
Country of publisher Netherlands
Confidentiality degree is not subject to a state or trade secret
Impact factor Impact factor: 2.359
RIV identification code RIV/00216224:14310/06:00015840
Organization unit Faculty of Science
UT WoS 000240892700022
Keywords (in Czech) proudění vzduchu; oxid uhličitý; jeskynní dóm; skapová voda; modelování; radon
Keywords in English Airflow; Carbon dioxide; Cave chamber; Dripwater; Modeling; Radon
Tags Airflow, carbon dioxide, Cave chamber, dripwater, modeling, radon
Tags International impact, Reviewed
Changed by Changed by: doc. Ing. Jiří Faimon, Dr., učo 1405. Changed: 2/2/2012 13:44.
Abstract
The evolution of CO2 levels was studied in the ventilated and unventilated Nagel Dome chamber (the Císařská Cave) with- and without human presence. Based on a simplified dynamic model and CO2/Rn data (222Rn considered as a conservative tracer), two types of CO2-fluxes into the chamber were distinguished: (1) the natural input of (2-4)x10-6 m3 s-1, corresponding to a flux of (8.5-17)x10-10 m3 m-2 s-1 and (2) an anthropogenic input of (0.6-2.5)x10-4 m3 s-1, corresponding to an average partial flux of (4.8–7.7)x10-6 m3 s-1 person-1. The chamber ventilation rates were calculated in the range from 0.033 to 0.155 h-1. Comparison of the chamber CO2-levels with chamber dripwater chemistry indicates that the peak CO2-concentrations during stay of persons (log pCO2 -2.97, -2.89, and -2.83) do not reach the theoretical values at which dripwater carbonate species and air CO2 are at equilibrium (log pCO2(DW) -2.76 to -2.79). This means that CO2-degassing of the dripwaters will continue, increasing supersaturation with respect to calcite (dripwater saturation index defined as SI(calcite) = aCa2+ aCO3 2-/10-8.4 varied in the range from 0.76 to 0.86). The pCO2(DW) values, however, would easily be exceeded if the period of person stay in the chamber had been slightly extended (from 2.85 to 4 h under given conditions). In such case, the dripwater CO2-degassing would be inverted into CO2-dissolution and dripwater supersaturation would decrease. Achieving the threshold values at which water become aggressive to calcite (log pCO2(EK) -1.99, -2.02, and -1.84) would require extreme conditions, e.g., simultaneous presence of 100 persons in the cave chamber for 14 h. The study should contribute to a better preservation of cave environment.
Abstract (in Czech)
The evolution of CO2 levels was studied in the ventilated and unventilated Nagel Dome chamber (the Císařská Cave) with- and without human presence. Based on a simplified dynamic model and CO2/Rn data (222Rn considered as a conservative tracer), two types of CO2-fluxes into the chamber were distinguished: (1) the natural input of (2-4)x10-6 m3 s-1, corresponding to a flux of (8.5-17)x10-10 m3 m-2 s-1 and (2) an anthropogenic input of (0.6-2.5)x10-4 m3 s-1, corresponding to an average partial flux of (4.8–7.7)x10-6 m3 s-1 person-1. The chamber ventilation rates were calculated in the range from 0.033 to 0.155 h-1. Comparison of the chamber CO2-levels with chamber dripwater chemistry indicates that the peak CO2-concentrations during stay of persons (log pCO2 -2.97, -2.89, and -2.83) do not reach the theoretical values at which dripwater carbonate species and air CO2 are at equilibrium (log pCO2(DW) -2.76 to -2.79). This means that CO2-degassing of the dripwaters will continue, increasing supersaturation with respect to calcite (dripwater saturation index defined as SI(calcite) = aCa2+ aCO3 2-/10-8.4 varied in the range from 0.76 to 0.86). The pCO2(DW) values, however, would easily be exceeded if the period of person stay in the chamber had been slightly extended (from 2.85 to 4 h under given conditions). In such case, the dripwater CO2-degassing would be inverted into CO2-dissolution and dripwater supersaturation would decrease. Achieving the threshold values at which water become aggressive to calcite (log pCO2(EK) -1.99, -2.02, and -1.84) would require extreme conditions, e.g., simultaneous presence of 100 persons in the cave chamber for 14 h. The study should contribute to a better preservation of cave environment.
Links
GA205/03/1128, research and development projectName: Recentní krasové procesy: destrukce speleotém
Investor: Czech Science Foundation, Recent karst processes: speleothem destruction
MSM0021622412, plan (intention)Name: Interakce mezi chemickými látkami, prostředím a biologickými systémy a jejich důsledky na globální, regionální a lokální úrovni (INCHEMBIOL) (Acronym: INCHEMBIOL)
Investor: Ministry of Education, Youth and Sports of the CR, Interactions among the chemicals, environment and biological systems and their consequences on the global, regional and local scales (INCHEMBIOL)
PrintDisplayed: 26/4/2024 18:24