Detailed Information on Publication Record
2006
On Decidability of LTL Model Checking for Weakly Extended Process Rewrite Systems
BOZZELLI, Laura, Mojmír KŘETÍNSKÝ, Vojtěch ŘEHÁK and Jan STREJČEKBasic information
Original name
On Decidability of LTL Model Checking for Weakly Extended Process Rewrite Systems
Name in Czech
O rozhodnutelnosti problému ověřování modelu pro LTL a slabě royšířené procesové přepisovací systémy
Authors
BOZZELLI, Laura (380 Italy), Mojmír KŘETÍNSKÝ (203 Czech Republic, guarantor), Vojtěch ŘEHÁK (203 Czech Republic) and Jan STREJČEK (203 Czech Republic)
Edition
Brno, FIMU-RS-2006-05, 2006
Publisher
FI MU
Other information
Language
English
Type of outcome
Audiovizuální tvorba
Field of Study
10201 Computer sciences, information science, bioinformatics
Country of publisher
Czech Republic
Confidentiality degree
není předmětem státního či obchodního tajemství
References:
RIV identification code
RIV/00216224:14330/06:00015439
Organization unit
Faculty of Informatics
Keywords in English
infinite-state systems; linear time logic; decidability; model checking
Tags
International impact
Změněno: 31/3/2010 15:19, doc. RNDr. Vojtěch Řehák, Ph.D.
V originále
We establish a decidability boundary of the model checking problem for infinite-state systems defined by \emph{Process Rewrite Systems} (PRS) or \emph{weakly extended Process Rewrite Systems} (wPRS), % possibly extended with a weak finite-state control unit, and properties described by basic fragments of action-based \emph{Linear Temporal Logic} (LTL). It is known that the problem for general LTL properties is decidable for Petri nets and for pushdown processes, while it is undecidable for PA processes. As our main result, we show that the problem is decidable for wPRS if we consider properties defined by formulae with only modalities \emph{strict eventually} and \emph{strict always}. Moreover, we show that the problem remains undecidable for PA processes even with respect to the LTL fragment with the only modality \emph{until} or the fragment with modalities \emph{next} and \emph{infinitely often}.
In Czech
Je ustanovena hranice rozhodnutelnosti pro problém ověřování modelu pro fragmenty logiky LTL a nekonečně stavové systémy generované tzv. procesovými přepisovacími systémy (eventuelně rozšířenými o tzv. slabou konečně stavovou řídicí jednotku). Zejména je ukázáno, že tento problém je rozhodnutelný na celé zmíněné třídě pro LTL frament s modalitami "strict always" a "strict eventually". Problém je nerozhodnutelný pro třídu PA procesů a fragment s modalitou "until" resp. fragment s modalitami "next" a "infinitely often".
Links
GA201/06/1338, research and development project |
| ||
GD102/05/H050, research and development project |
| ||
MSM0021622419, plan (intention) |
| ||
1ET408050503, research and development project |
| ||
1M0545, research and development project |
|