Detailed Information on Publication Record
2007
Linearizing Generalized Kahler Geometry
VON UNGE, Rikard, Maxim ZABZINE, Ulf LINDSTRÖM and Martin ROCEKBasic information
Original name
Linearizing Generalized Kahler Geometry
Name in Czech
Linearizace zobecneni Kahlerova geometrie
Authors
VON UNGE, Rikard (752 Sweden, guarantor, belonging to the institution), Maxim ZABZINE (643 Russian Federation), Ulf LINDSTRÖM (752 Sweden) and Martin ROCEK (840 United States of America)
Edition
Journal of High Energy Physics, CERN, 2007, 1126-6708
Other information
Language
English
Type of outcome
Článek v odborném periodiku
Field of Study
10301 Atomic, molecular and chemical physics
Country of publisher
United Kingdom of Great Britain and Northern Ireland
Confidentiality degree
není předmětem státního či obchodního tajemství
References:
Impact factor
Impact factor: 5.659
RIV identification code
RIV/00216224:14310/07:00050762
Organization unit
Faculty of Science
UT WoS
000246396400061
Keywords in English
Generalized complex geometry; Sigma models; supersymmetry
Tags
International impact, Reviewed
Změněno: 20/4/2012 09:00, Ing. Andrea Mikešková
V originále
The geometry of the target space of an N=(2,2) supersymmetry sigma-model carries a generalized Kahler structure. There always exists a real function, the generalized Kahler potential K, that encodes all the relevant local differential geometry data: the metric, the B-field, etc. Generically this data is given by nonlinear functions of the second derivatives of K. We show that, at least locally, the nonlinearity on any generalized Kahler manifold can be explained as arising from a quotient of a space without this nonlinearity.
In Czech
Geometrie ciloveho prostoru N=(2,2) supersymmetricky sigma model nosi zobecneni Kahler strukturu. Vzdycky existuje realni funkce, zobecneni Kahlerovsky potential K, ktera obsahuje vsechny differentialni geometricke data, metrika, B-pole, etc. Obecne tuto data je vyadreni pomoci nelinearni funkce druhe derivace K. My dokazeme, ze lokalni, tuto nelinearnosti se da vysvetlovat pomoci kvocient z prostoru bez nelinearity.
Links
ME 649, research and development project |
| ||
MSM0021622409, plan (intention) |
|