J 2007

Linearizing Generalized Kahler Geometry

VON UNGE, Rikard, Maxim ZABZINE, Ulf LINDSTRÖM and Martin ROCEK

Basic information

Original name

Linearizing Generalized Kahler Geometry

Name in Czech

Linearizace zobecneni Kahlerova geometrie

Authors

VON UNGE, Rikard (752 Sweden, guarantor, belonging to the institution), Maxim ZABZINE (643 Russian Federation), Ulf LINDSTRÖM (752 Sweden) and Martin ROCEK (840 United States of America)

Edition

Journal of High Energy Physics, CERN, 2007, 1126-6708

Other information

Language

English

Type of outcome

Článek v odborném periodiku

Field of Study

10301 Atomic, molecular and chemical physics

Country of publisher

United Kingdom of Great Britain and Northern Ireland

Confidentiality degree

není předmětem státního či obchodního tajemství

References:

Impact factor

Impact factor: 5.659

RIV identification code

RIV/00216224:14310/07:00050762

Organization unit

Faculty of Science

UT WoS

000246396400061

Keywords in English

Generalized complex geometry; Sigma models; supersymmetry

Tags

International impact, Reviewed
Změněno: 20/4/2012 09:00, Ing. Andrea Mikešková

Abstract

V originále

The geometry of the target space of an N=(2,2) supersymmetry sigma-model carries a generalized Kahler structure. There always exists a real function, the generalized Kahler potential K, that encodes all the relevant local differential geometry data: the metric, the B-field, etc. Generically this data is given by nonlinear functions of the second derivatives of K. We show that, at least locally, the nonlinearity on any generalized Kahler manifold can be explained as arising from a quotient of a space without this nonlinearity.

In Czech

Geometrie ciloveho prostoru N=(2,2) supersymmetricky sigma model nosi zobecneni Kahler strukturu. Vzdycky existuje realni funkce, zobecneni Kahlerovsky potential K, ktera obsahuje vsechny differentialni geometricke data, metrika, B-pole, etc. Obecne tuto data je vyadreni pomoci nelinearni funkce druhe derivace K. My dokazeme, ze lokalni, tuto nelinearnosti se da vysvetlovat pomoci kvocient z prostoru bez nelinearity.

Links

ME 649, research and development project
Name: Nekomutativní teorie pole a projektivní superprostor
Investor: Ministry of Education, Youth and Sports of the CR, Non-comutative theory of field and projective superspace, Research and Development Programme KONTAKT (ME)
MSM0021622409, plan (intention)
Name: Matematické struktury a jejich fyzikální aplikace
Investor: Ministry of Education, Youth and Sports of the CR, Mathematical structures and their physical applications