V originále
Most of the historical phytosociological data on vegetation composition have been sampled preferentially and thus belong to those ecological data that do not fulfill the statistical assumption of independence of observations, necessary for valid statistical testing and inference. Nevertheless, phytosociological data have been recently used for various ecological meta-analyses, especially in studies of large-scale vegetation patterns. For this reason, we focus on the comparison of preferential sampling with other sampling designs that have been recommended as more convenient alternatives from the point of view of statistical theory. We discuss that while simple random sampling, systematic sampling and stratified random sampling better meet some of the statistical assumptions, preferential sampling yields data sets that cover a broader range of vegetation variability. Moreover, todays large phytosociological databases provide huge amounts of vegetation data with unrivalled geographic extent and density. We conclude that in the near future ecologists will not be able to replace the preferentially sampled phytosociological data in large-scale studies. At the same time, phytosociological databases have to be complemented with relevés of vegetation composed mostly of common and generalist species, which are under-represented in historical data. Stratified random sampling seems to be a suitable tool for doing this. Nevertheless, a methodology and input data for stratification have to be developed to make stratified random sampling an ecologically more relevant and practical method.
Česky
Většina dostupných fytocenologických dat o složení vegetace byla získána preferenčním snímkováním a patří tudíž mezi ekologická data jež nesplňují statistický předpoklad nezávislosti pozorování, nezbytný pro validní statistické testování a odvozování. Zaměřili jsme se proto na srovnání preferenčního snímkování a jiných typů sběru dat o vegetaci jež jsou z hlediska statistické teorie doporučovány jako vhodnější alternativy. Dospěli jsme k závěru, že v blízké budoucnosti se ekologové pracující na velké časové a prostorové škále neobejdou bez preferenčně sebraných dat. Současně však musí být vegetační databáze doplněny o snímky vegetace tvořené běžnými druhy a generalisty, jež nejsou v dostupných datech dostatečně zastoupené. Vhodným nástrojem k tomu může být stratifikované náhodné snímkování. Nicméně metodika a vstupní data pro stratifikaci musí být dopracovány, aby se stratifikované náhodné snímkování mohlo stát ekologicky relevantnější a užitečnější metodou.