V originále
The asymptotic nature of the solutions of a real two-dimensional system of retarded differential equations x'(t) = A(t)x(t) + B(t)x(t-r)+ h(t,x(t),x(t-r)), where r>0 is a constant delay, A, B and h being matrix functions and a vector function, respectively, is examined. The method of complexification transforms this system to one equation with complex-valued coefficients. Stability and the asymptotic properties of this equation are studied by means of a suitable Lyapunov-Krasovskii functional and by virtue of the Wazewski topological principle.
Česky
Jsou vyšetřovány asymptotické vlastnosti řešení reálného dvoudimenzionálního systému diferenciálních rovnic x'(t) = A(t)x(t)+B(t)x(t-r)+h(t,x(t),x(t-r)), kde r>0 je konstantní zpoždění, A,B jsou maticové funkce a h je vektorová funkce. Metodou komplexifikace je uvažovaný systém převeden na jednu rovnici s komplexními koeficienty. Pomocí vhodného Ljapunov-Krasovského funkcionálu a Wažewského topologického principu je studována stabilita a asymptotické vlastnosti této rovnice.