Detailed Information on Publication Record
2007
Image Similarity Search: Theory and Practice
NOVÁK, DavidBasic information
Original name
Image Similarity Search: Theory and Practice
Name in Czech
Podobnostní vyhledávání v obrázcích: Teorie a praxe
Authors
NOVÁK, David (203 Czech Republic, guarantor, belonging to the institution)
Edition
Brno, Czech Republic, MEMICS 2007: Third Doctoral Workshop on Mathematical and Engineering Methods in Computer Science, p. 154-160, 7 pp. 2007
Publisher
Masaryk University and Technical University of Brno
Other information
Language
English
Type of outcome
Stať ve sborníku
Field of Study
10201 Computer sciences, information science, bioinformatics
Country of publisher
Czech Republic
Confidentiality degree
není předmětem státního či obchodního tajemství
Publication form
printed version "print"
References:
RIV identification code
RIV/00216224:14330/07:00019493
Organization unit
Faculty of Informatics
ISBN
978-80-7355-077-6
Keywords in English
similarity search; content based image retrieval; peer-to-peer
Tags
International impact, Reviewed
Změněno: 17/9/2013 08:54, RNDr. David Novák, Ph.D.
V originále
The data-explosion phenomenon proceeds in two respects: (1) The volume of data produced is increasing rapidly and (2) new data types appear and are widely used. This calls for development of brand new indexing and searching methods which would respect the needs of the recent data types and be efficient on vast amounts of data. This paper describes a transfer of our previous theoretical results in this area into practice by building a fully functional application. The application is able to efficiently manage large collections of digital images and search these images according to their very content (the similarity search). Its distributed architecture is based on the peer-to-peer paradigm and the searching method adopts the metric-based approach to similarity. Currently the application can store and search tens of millions of images downloaded from the Web with dozens of simultaneous users, although it runs on a limited hardware infrastructure.
In Czech
Článek popisuje převod našich teoretických výsledků v oblasti podobnostního vyhledávání do praxe. Výsledkem je funkční systém pro plnohodnotné podobnostní vyhledávání v rozsáhlých kolekcích digitálních obrázků.
Links
GD102/05/H050, research and development project |
| ||
1ET100300419, research and development project |
|