2007
Electronegativity Equalization Method: Parameterization and Validation for Large Sets of Organic, Organohalogene and Organometal Molecule
SVOBODOVÁ VAŘEKOVÁ, Radka; Zuzana JIROUŠKOVÁ; Jakub VANĚK; Šimon SUCHOMEL; Jaroslav KOČA et. al.Základní údaje
Originální název
Electronegativity Equalization Method: Parameterization and Validation for Large Sets of Organic, Organohalogene and Organometal Molecule
Název česky
Electronegativity Equalization Method: Parameterization and Validation for Large Sets of Organic, Organohalogene and Organometal Molecule
Autoři
SVOBODOVÁ VAŘEKOVÁ, Radka (203 Česká republika, domácí); Zuzana JIROUŠKOVÁ (203 Česká republika, domácí); Jakub VANĚK (203 Česká republika); Šimon SUCHOMEL (203 Česká republika, domácí) a Jaroslav KOČA (203 Česká republika, garant, domácí)
Vydání
International Journal of Molecular Sciences, Basel, Switzerland, MDPI Center, 2007, 1422-0067
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10403 Physical chemistry
Stát vydavatele
Česká republika
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Kód RIV
RIV/00216224:14310/07:00022795
Organizační jednotka
Přírodovědecká fakulta
UT WoS
000248319800002
Klíčová slova anglicky
Charge Distribution; Electronegativity Equalization Method; Parameterization; Organohalogenes; Organometals
Štítky
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 7. 1. 2019 13:45, RNDr. Pavel Šmerk, Ph.D.
V originále
The Electronegativity Equalization Method (EEM) is a fast approach for charge calculation. A challenging part of the EEM is the parameterization, which is performed using ab initio charges obtained for a set of molecules. The goal of our work was to perform the EEM parameterization for selected sets of organic, organohalogen and organometal molecules. We have performed the most robust parameterization published so far. The EEM parameterization was based on 12 training sets selected from a database of predicted 3D structures (NCI DIS) and from a database of crystallographic structures (CSD). Each set contained from 2000 to 6000 molecules. We have shown that the number of molecules in the training set is very important for quality of the parameters. We have improved EEM parameters (STO-3G MPA charges) for elements that were already parameterized, specifically: C, O, N, H, S, F and Cl. The new parameters provide more accurate charges than those published previously. We have also developed new parameters for elements that were not parameterized yet, specifically for Br, I, Fe and Zn. We have also performed crossover validation of all obtained parameters using all training sets that included relevant elements and confirmed that calculated parameters provide accurate charges.
Česky
The Electronegativity Equalization Method (EEM) is a fast approach for charge calculation. A challenging part of the EEM is the parameterization, which is performed using ab initio charges obtained for a set of molecules. The goal of our work was to perform the EEM parameterization for selected sets of organic, organohalogen and organometal molecules. We have performed the most robust parameterization published so far. The EEM parameterization was based on 12 training sets selected from a database of predicted 3D structures (NCI DIS) and from a database of crystallographic structures (CSD). Each set contained from 2000 to 6000 molecules. We have shown that the number of molecules in the training set is very important for quality of the parameters. We have improved EEM parameters (STO-3G MPA charges) for elements that were already parameterized, specifically: C, O, N, H, S, F and Cl. The new parameters provide more accurate charges than those published previously. We have also developed new parameters for elements that were not parameterized yet, specifically for Br, I, Fe and Zn. We have also performed crossover validation of all obtained parameters using all training sets that included relevant elements and confirmed that calculated parameters provide accurate charges.
Návaznosti
LC06030, projekt VaV |
| ||
MSM0021622413, záměr |
|