KOZUBEK, Michal and Jakub KULAVIAK. Optimizing light throughput in fluorescence microscopy. In 6th International ELMI Meeting and Workshop on Advanced Light Microscopy: Abstract Book. 2006.
Other formats:   BibTeX LaTeX RIS
Basic information
Original name Optimizing light throughput in fluorescence microscopy
Name in Czech Optimalizace světelné propustnosti ve fluorescenční mikroskopii
Authors KOZUBEK, Michal (203 Czech Republic, guarantor) and Jakub KULAVIAK (203 Czech Republic).
Edition 6th International ELMI Meeting and Workshop on Advanced Light Microscopy: Abstract Book, 2006.
Other information
Original language English
Type of outcome Conference abstract
Field of Study 20200 2.2 Electrical engineering, Electronic engineering, Information engineering
Country of publisher Portugal
Confidentiality degree is not subject to a state or trade secret
RIV identification code RIV/00216224:14330/06:00041813
Organization unit Faculty of Informatics
Keywords in English fluorescence microscopy; image formation
Tags fluorescence microscopy, image formation
Tags International impact, Reviewed
Changed by Changed by: prof. RNDr. Michal Kozubek, Ph.D., učo 3740. Changed: 7/5/2010 09:09.
Abstract
Fluorescence microscopy applications often suffer from the lack of light. Low light levels typically cause poor signal-to-noise ratio or long exposure times. Signal level in fluorescence set-up is determined by many factors, such as: power of the light source and its spectral characteristics, transmission curves of excitation/emission filters, transmission curves of and dichroic/polychroic mirrors, excitation/emission spectra of imaged fluorochrome(s), numerical aperture of the objective and its transmission curve, quantum efficiency curve of the light detector. Thus, resulting light throughput is given by the composition of spectral characteristics (functions of wavelength) of many components. Proper computation and optimization of light throughput is a non-trivial task that requires knowledge of all these curves for all available hardware components as well as all available fluorochromes. Such computation is unfortunately not performed by the users and is typically replaced, for example, by visual comparison of fluorochrome spectral curves with spectral curves of optical filters when choosing fluorochromes or filters. Quantum efficiency curve of the detector or spectral characteristics of the white light source are usually not taken into account at all. In our laboratory, we have developed software for the computation of the overall light throughput of an optical set-up. It can assist users in choosing hardware components for their system as well as choosing suitable fluorochromes. For each component the user enters the available choices (e.g. list of available optical filters, list of available fluorochromes, list of available cameras in camera-based systems, etc.) and the computer suggests a list of suitable combinations ordered according to the resulting signal level. Contrast between signal from emitted fluorescence and signal from remaining excitation light is also taken into account. This research has been supported by the Ministry of Education of the Czech Republic (Projects No. MSM0021622419 and No. LC535).
Abstract (in Czech)
Příspěvek se zabývá optimalizací světelné propustnosti ve fluorescenční mikroskopii.
Links
LC535, research and development projectName: Dynamika a organizace chromosomů během buněčného cyklu v normě a patologii
Investor: Ministry of Education, Youth and Sports of the CR, Dynamika a organizace chromosomů během buněčného cyklu v normě a patologii
MSM0021622419, plan (intention)Name: Vysoce paralelní a distribuované výpočetní systémy
Investor: Ministry of Education, Youth and Sports of the CR, Highly Parallel and Distributed Computing Systems
PrintDisplayed: 25/4/2024 10:28