A Case Study in Parallel Verification
of Component-Based Systems

N. Benes, I. Cernd, J. Sochor, P. Varekova and B. Zimmerova'?

Faculty of Informatics, Masaryk Universily
Brno, Czech Republic

Abstract

In large component-based systems, the applicability of formal verification techniques to check interaction
correctness among components is becoming challenging due to the concurrency of a large number of com-
ponents. In our approach, we employ parallel LTL-like model checking to handle the size of the model. We
present the results of the actual application of the technique to the verification of a complex model of a
real system created within the CoCoME Modelling Contest [18]. In this case study, we check the validity
of the model and the correctness of the system via checking various temporal properties. We concentrate
on the component-specific properties, like local deadlocks of components, and correctness of given use-case
scenarios.

Keywords: Component-based systems, formal verification, parallel model checking.

1 Introduction

During the last decade, software industry has seriously started to take advantage of
component-based software development as an alternative to existing software devel-
opment techniques. Component-based development proposes to assemble software
systems from reusable components, possibly in a hierarchical manner. This helps
to significantly reduce development costs, but brings the issue of correctness of such
system, especially if components are delivered by different vendors.

In this paper, we present a practical application of verification techniques to
a large component-based system designed within the CoCoME Modelling Con-
test [15]. In the contest, a number of teams were asked to create a detailed model
of a common component-based system to make their modelling approaches com-
parable. While in [18], we present our model of the CoCoME system, this paper

L Email: {xbenes3 ,cerna,sochor,xvarekol, zimmerova}@fi .muni.cz

2 The work has been supported by the grants No. 1ET400300504 and No. 1ET408050503.

Workshop Proceedings PDMC 28 March 2008

complements the work by verifying the model. In verification, we concentrate on
properties of the final model like correctness of given use-case scenarios, local dead-
locks of components, and response properties. Besides these we demonstrate how
the verification helped us to check the validity of the model during modelling.

As a modelling language for component-based systems we use Component-
Interaction automata (or CI automata for short) [6,8] which allow very precise and
detailed description of communication among system components. System proper-
ties are specified in an extended version of the action-based linear time logic LTL,
called CI-LTL. For verification itself we use the automata-based model checking
algorithms implemented in the parallel model checking tool DiVinE [4,10]. We
advocate the choice of a parallel tool by a tremendous size of the model given by
concurrency of components in the system.

A short description of the CoCoME Modelling Contest is given in Section 2
followed by an outline of CI automata modelling language and CI-LTL logic in
Section 3. Section 4 introduces the model we have created within the contest, and
Section 5 lists required properties and use-case scenarios including their verification.
Finally, Section 6 discusses the results and experience gained during the verification.

2 CoCoME Modelling Contest

In order to leverage component-based system design to build correct and depend-
able component-based systems, researchers have developed various formal and semi-
formal component models which concentrate on different yet related aspects of com-
ponent modelling [13,7,5,12,2,11]. The main goal of the CoCoME (Common Com-
ponent Modelling Exzample) Modelling Contest [15] was to evaluate and compare
the practical appliance of existing component modelling approaches and techniques
on a common modelling example, which was designed to comprise a large number
of various aspects and modelling issues that can be identified in different types of
component-based systems.

The modelling example, called Trading System, serves to handle sales in a chain
of supermarkets. Its functionality includes the interaction with the cashier at the
cash desk, like product scanning, price lookup, cash/card payment, and bill printing,
as well as accounting the sale at the inventory, or determining whether an express
cash desk is needed in the store. Furthermore, the Trading System deals with
ordering goods from wholesalers, and generating various kinds of reports.

The Trading System was implemented as a Java application where components
correspond to packages in the source code. The Java source code (125 Java classes
in total) served as a detailed specification of the system. The component structure
of the application up to depth four is depicted in Figure 1. The system is an open
system, designed to interact with external components representing users of the
system (cashiers and managers) and a bank application.

TradingSystem {l
CashDeskLine @ Inventory a
CashDesk gl Data gl
CashDeskApplication gl CashDeskChanneI@ Persistence 3] Store g]
CashBoxController
g] ExtCommChannel g] Enterprise gl
ScannerController g] Coordinat
oordinator
g] Application gl
CardReaderControIIerg] StoreAppIicationa ProductDispatchergl
PrinterController gl ReportingAppIicationgl
LightDispIayControIlelgl SUl €|
StoreGUI ReportingGUI
CashDeskGUI gl $:| P 9 gl

Fig. 1. CoCoME Trading System overview

3 Foundations

3.1 Modelling language

To model behaviour of component-based systems we use the CI automata lan-
guage [6,8]. The language models each component as a labelled transition system
with structured labels and a hierarchy of component names. The transition label ar-
ticulates which components communicate on an action, and the hierarchy of names
represents the architectural structure of the component.

A CI automaton is a 5-tuple C = (Q, Act, d, I, H) where () is a finite set of states,
Act is a finite set of actions, ¥ = ((SgU{—}) x Act x (SgU{—}))\({—} x Act x{-})
is a set of labels, 6 C @ x X x Q) is a finite set of labelled transitions, I C (@ is
a nonempty set of initial states, and H is a structured tuple representing a hierarchy
of component names where the set of component names is denoted Sy.

Hierarchy: (1) Hierarchy: (2)
1,s
—,8B,2
(= (=B, (2,int,2)
(1,sC,—
Ci: Cy: (p) T

~ (2aSB,77)
—,sC",1
(1,54",—) “B1) (—,sC,3)
C: —0O @
(3750,7_)

Hierarchy: (3)

Fig. 2. Three examples of CI automata

The labels have semantics of input, output, or internal, based on their structure.
In the triple, the middle item represents an action name, the first item represents

a name of the component that outputs the action, and the third item represents
a name of the component that inputs the action. Examples of three CI automata
are in Figure 2. Each of them represents a model of behaviour of a basic component.
For example, (—,sA,1) in C; signifies that the component with numerical name 1
inputs an action sA (a request for a service sA()), and (1,sA’,—) in C; signifies
that the component 1 outputs an action sA’ (a response for the service sA()).

To compose components into a higher-level component a composition operator is
defined. Automata can be composed together using a parametrizable composition
operator ®”, which composes a given finite set of automata with respect to the
set of feasible labels F. Given a set of labels F, the operator composes the set
of CI automata into a product automaton allowing only those transitions from
the product that have labels from F. In the product, the components cooperate
either by interleaving of their original transitions, or by simultaneous execution
of two complementary transitions (with labels (n1,a,—), (—,a,n2)) which results
into a new internal transition (with label (n1,a,n9)). An example of a composite
automaton is in Figure 3. A wider range of composition operators is defined in [6,8].

(1,5B,2)

{((5,4,p)
C: (rp,9) (2,int,2)
)
(2B 1) (s,r,p)
Hierarchy: ((1),(2),(3))
Fig. 3. A composite CI automaton C = ®&7{C;,C2,C3} where Ci,C2,C3 are in Fig. 2, and

F= {(_7 SAv 1); (la SA’a _): (17 SB: 2); (2a SB,: 1)7 (27 int: 2)7 (17 SC7 3); (3a SC’a 1)}

3.2 Temporal logic

For property specification, we use a slightly modified version of the linear temporal
logic LTL [14] which we refer to as CI-LTL. CI-LTL is designed to express properties
about occurring component interaction (i.e. labels in automata), but also about
possible component interaction (i.e. label enabledness).

Syntax. For a given set of labels, formulas of CI-LTL are defined as

(1) P(I) and £(I) are formulas, where [is a label.

(2) If ® and ¥ are formulas, then also ® A ¥, - &, X & and ¢ U ¥ are formulas.

(3) Every formula can be obtained by a finite number of applications of steps (1)
and (2).

Other operators can be defined as shortcuts: ¢VV¥ =-(-QA-VY), &=V =

= (PA=T), F&=trueld ® (Future), G =-F - ® (Globally).

Semantics. Let C = (Q, Act, 0,1, H) be a CI automaton. We define a run of C as

an infinite sequence o = qo,lo,q1,01,q2,..., where ¢; € Q, and Vi.(q;,li,qi+1) € 6.
We further define:

* o(i) = g; (i-th state of o)
* 0" = gi,lisgi+1,liv1, Giv2, - - (i-th sub-run of o)
* L(o,i) =1; (i-th label of o)

CI formulas are interpreted over runs and the satisfaction relation |= is defined as

o = E(l) = 3q.000) L q

ol=P() & L(0,0) =1

oc=®AT = okE®ando =V

oE-® = oD

cEXD = ol =0

cEOUT — FeNy.o/ EVandVkeNy,k<j.of =@

Informally, formula £(I) is true in all states of the system where the interaction
represented by the label | can possibly happen. Formula P(l) is true for a run
whenever the interaction represented by the label [is actually happening as the
very first transition of the run.

3.3 Model checking and verification tool

For model checking CI-LTL properties, the automata-based algorithm [17] is slightly
modified in the way how a formula is translated into a Biichi automaton. Automaton
has a special alphabet formed by doubles (set of labels, label). The items correspond
to the two operators £(/) and P(I). Apart from that, the model checking algorithm
remains the same as in the case of standard LTL (accepting cycle detection) and
therefore it has the same complexity.

The tool DiVinE, which we use for the verification, provides several LTL model
checking algorithms. In our case study, the algorithm OWCTY [3] is employed. The
verifications presented in this paper have been performed on a cluster of ten 2.60
GHz Intel Pentium 4 Linux workstations with 3800 MB of RAM, interconnected
with a fast 100Mbps Ethernet and using Message Passing Interface (MPI) library.
The chosen number of computers is explained in Section 6.

4 Model of the Trading System

Within the CoCoME Modelling Contest [15], we have created a detailed model of
the Trading System in terms of component interaction using CI automata [18]. The
model in a textual notation is available at [16]. The model consists of 140 primitive
automata (59 in the CashDeskLine part, and 81 in the Inventory part), composed
hierarchically into 34 composite automata up to 6 levels of depth. The Trading
System model is complemented by several models of cashiers and managers, who
interact with the system, and specify various usage profiles under which properties
of the system are checked.

From the number of usage scenarios we have experimented with, in this case
study, we employ a usage scenario describing one sale assisted by a cashier. This
scenario represents the most complex usage profile described in [15], and it is con-
nected to a large number of component-specific properties that can be checked on
the behaviour of the system that is implied by the scenario. In the scenario, the
cashier first starts the sale, then scans items (in a loop), finishes the sale and re-
ceives the payment. It can select cash or card payment, where the cash payment is
followed by entering received amount and returning change, and the card payment
with scanning the card and entering PIN.

Besides the users, the system interacts with a bank application to exchange
information during card payments. For the bank we suppose that it can perform any
correct scenario, i.e. the bank is anytime able to receive requests and for each request
it returns a response. We simulate this situation by leaving the communication with
the bank open.

Size of the model. As mentioned above, the Trading System model is composed
out of 140 primitive automata hierarchically assembled into 34 composite automata.
Even if the size (number of states) of individual primitive automata is moderate, the
size of the complete state space is immense due to the concurrency in component
behaviour. An attempt to generate the complete state space on a cluster of twenty
computers finished with 322 millions of states demanding for 60 GB of memory in
total. However, for the verification of the model, the key properties are dependent
on usage scenarios performed by the user of the system. For the verification of the
model under the given usage scenario, the model is composed with an automaton
representing the user. This restricts the possible behaviours and decreases the state
space. The size of the model with the cashier mentioned earlier is 749 340 reachable
states and 3 181 473 reachable transitions.

5 Verification of the model

In this section, we discuss some of the properties that were checked on the model,
and present verification results. We concentrate on the properties that are specific to
component-based systems and emerged from the requirements on the Trading Sys-
tem. In the CoCoME Modelling Contest, a number of requirements were specified
in terms of use-case scenarios. Use-case scenarios define a behaviour of the system
in respounse to a given usage profile. Verification of use-case scenarios is studied at
the end of this section, and is followed by discussion on the importance of formal
verification, to check the validity of the model during the modelling process.

5.1 Basic properties

As the basic properties, we present two properties demonstrating the capability of
the CashDeskChannel component in the Trading System to broadcast events to the
components that subscribed for them.

Property 1 (Unwanted duplicity). When the CashDeskChannel (200) re-
ceives a request to broadcast the SaleSuccessEvent via (100, publishSaleSuccess-
Event, 200), the event is going to be delivered to all subscribers (200, on EventSale-
Success, X) at most once. In the property, as well as in the following properties,
action names are shortened to the sequence of first letters of their sub-words, e.g.
publishSaleSuccessEvent becomes pSSE.

(a) G (P(100,pSSE,200) = = [~ P(100,pSSE,200) U (P(200,0ESS, 142)A
X [~ P(100,pSSE, 200) U P(200,0ESS, 142)])])

(b) G (P(100,pSSE,200) = — [~ P(100,pSSE, 200) U (P(200,0ESS,162)A
X [~ P(100,pSSE, 200) U P(200,0ESS, 162)])])

property | states | transitions | memory | time | result

propla 749 340 3181473 533 MB | 68 s | holds

proplb 749 340 3181473 534 MB | 67 s | holds

The data in the table refer to the model composed with the appropriate property
automaton. “memory” means all memory used in verification of the property. Note
that the number of states of the model composed with the property is, in this case,
equal to the number of states of the original model. This interesting fact is explained
in Section 6.

Property 2 (Guaranteed delivery). Whenever the CashDeskChannel (200)
receives a request to broadcast the SaleSuccessEvent, the event is going to be deliv-
ered to all subscribers (200, on EventSaleSuccess, X) at least once, or an exception
occurs (200, exception PublishSaleSuccess Event, 100).

G [P(100,pSSE,200) = ([BOTHA -~ EXC|V [NONENA EXC])]
where

BOTH = [~ P(100,pSSE,200) U P(200,0ESS,142)] A [+ P(100, pSSE,200) U P(200,0ESS, 162)]
NONE = (— [~ P(100,pSSE,200) U P(200,0ESS, 142)]) A (— [P(100, pSSE,200) U P(200,0ESS, 162)])
EXC = - P(100,pSSE,200) U (200, ePSSE,100)

property | states | transitions | memory | time | result

prop2 749 340 3181473 533 MB | 68 s | holds

5.2 Local deadlocks of components

In component-based systems, many components coexist in parallel. Hence deadlock
of some of them cannot be detected as halting of the whole system. We understand
a local deadlock of a component as a state from which the component cannot move

further. This situation requires the enabledness £ operator, otherwise we could
only express that it does not move further. The following two properties describe
a local deadlock of a component on a particular service call, and the third property
specifies a local deadlock with respect to any action.

Property 3 (Local deadlock on one action). It cannot happen that the Store-

Application (610) is ready to call getTransactionContext () but never can do so
because its counterpart Persistence (511) is never ready to accept the call.

[F P(610,¢TC, —)] V G [E(610,¢gTC,—) = F £(610,¢TC, 511)]

property | states | transitions | memory | time | result

prop3 778100 3298 237 538 MB | 73 s | holds

This property helped us to evaluate one of our modelling decisions. As the ser-
vice getTransactionContext () activates a new instance of the component Trans-
actionContextImpl, where only a limited number of instances can be active at any
time, this property allows us to check that the bound on the number of instances
that are ready to be activated is sufficient.

Note that this property requires the existence of the (610, getTransaction-
Contert, —) label in the model. However it is omitted in our model because we
suppose it must synchronize with its counterpart and be removed from the model.
Therefore for the purpose of verification of this property, we modify the model in
a way that this label is not omitted. Surprisingly, this does not influence the state-
space traversed during verification because the property automaton forces traversal
of only the runs with no (610, getT'ransactionContext, —) on them.

Property 4 (Local deadlock on one action). It cannot happen that the
CashDeskApplication (100) is ready to send a notification to the CashDeskChannel
(200) saying that it received the SaleStartedEvent, but the CashDeskChannel is
never ready to accept the notification.

[F P(100,0ESS", —)] V G [£(100,0ESS", —) = F £(100,0ESS",200)]

property | states | transitions | memory | time | result

prop4 749 343 3181479 533 MB | 67 s | holds

The CashDeskChannel (200) in the system is not allowed to accept notifications
before it delivers events to all subscribers. If some of the subscribers would be
constantly refusing to accept the event, it could block other components that already
accepted the event and want to notify the channel. As the property is valid, this

cannot happen in the system (on the SaleStarted Event).

Property 5 (Local deadlock on any action). It cannot happen that the Per-
sistence (511) for StoreApplication becomes deadlocked (cannot make any action).

G F (ENABLED 51;)

where ENABLED 511 = £(610, gPC, 511)VE(620, gPC,511) V... VE(511, eI A, 620),
that is a disjunction of formulas of type £(label) for all labels the Persistence (511)
participates in.

property | states | transitions | memory | time result

propb 1498679 7805074 690 MB | 561 s | does not hold

The violation of the property means that the system gets into a state from which
the component is no more able to perform any computation. This can happen for
three reasons: (1) it gets stuck in its internal computation, (2) the environment
refuses to accept its calls, or (3) the environment does not wish the component to
compute anything for it any more. In our model, the last case is true, because in
the usage profile, we suppose that only one sale is accomplished. Hence the system
is not supposed to execute forever.

5.8 Blocking of components

Here we study a more strict version of local deadlocks, which is temporary blocking
of a component because of non-readiness of its counterpart to accept its calls. This
property is considered the core issue of correctness of component-based systems in
several component-based models (SOFA [1], Interface automata [9]).

Property 6. It cannot happen that the StoreApplication (610) wants to begin a

transaction (610, beginTransaction,—) calling the TransactionContextImpl (511),
which is not right in the current state ready to accept it.

[F P(610,bT,)] V G = [£(610,bT, —) A = £(610,bT",511)]

property | states | transitions | memory | time | result

prop6 749 340 3181473 536 MB | 71s | holds

Note that we require the existence of the (610, beginTransaction, —) label in the
model. For the purpose of this verification, we modify the model in a way similar
to the case with property 3. Even here, the resulting state space does not change,
due to the nature of the property automaton.

Property 7. It cannot happen that the CashDeskApplication (100) is ready to send
a notification to the CashDeskChannel (200) saying that it received the SaleStart-
edEvent, but the CashDeskChannel is not right in the current state ready to accept
the notification.

[F P(100,0ESS5", —)] V G~ [£(100,0ESS5", —) A = £(100,0ESS" ,200)]

property | states | transitions | memory | time result

prop7 1498671 6362935 689 MB | 546 s | does not hold

The property is a more strict version of the property 4. While the property 4
shows that the CashDeskChannel (200) always sends all copies of the SaleStartedE-
vent and gets into the state where it is ready to start accepting notifications, this
property shows that it may take a while before the channel gets ready. However,
this is not an error in the system. It correctly reflects the nature of the channel.

5.4 Loop issues

In our model, many cycles/loops can be found. Each loop can complete a run that
enters it but never exits. In software systems, however, most of the loops in models
result from for or while cycles that are traversed only finitely many times. This
can cause non-realistic results of properties verification. The properties should be
verified only on the runs that follow selected loops only finitely many times.

Property 8. Whenever the ProductDispatcher (630) call queryStoreById() on the
Store for ProductDispatcher (523) via (630, queryStoreByld, 523), it gets a response
(523, queryStoreBylId',630) at some point in the future.

G [P(630,¢SBI,523) = F P(523,¢SBI', 630)]

property | states | transitions | memory | time result

prop8 750 684 3186 705 534 MB | 262 s | does not hold

In the counterexample, one of the components gets into a loop that it never
exits. This does not report a real situation in the system and hence a modification
of the property is necessary.

Property 9. Whenever the ReportingApplication (620) calls queryStoreById()
on the Store (522) for ReportingApplication via (620, queryStoreByld, 522), it gets
a response (522, queryStoreByld',620) at some point in the future.

G [P(620,¢SBI,522) = F P(522,qSBI’,620)]

10

property | states | transitions | memory | time | result

prop9 749 340 3181473 531 MB | 69 s | holds

The validity of this property may seem surprising as it is analogical to the
previous one. Further verification shows that the reason for the validity is that
(620, queryStoreByld, 522) is not reachable in the model with selected usage profile.

Property 10. Whenever the ProductDispatcher (630) calls queryStoreById() on
the Store (523) for ProductDispatcher, it gets a response at some point in the future,
if the progress of the system is forced by transitions of the Store (52%), which cannot
get into invalid infinite loop.

G [(P(630,gSBI,523) AGF MOVEss3) = F P(523,¢SBI’,630)]

where MOVE 503 = P(610,¢LSI,523) V P (620, gAST,523) V ...V P(630, ¢ST, 523),
that is a disjunction of formulas of type P(label) for all labels the Store (523)
participates in.

property | states | transitions | memory | time | result

propl0 750 684 3186 705 532 MB | 69 s | holds

What remains is to make sure that there is a run in the model which satisfies
the premise of this property’s implication, in order to prevent the same thing that
has happened in verification of property 8. This has been verified and such run has
been successfully found.

5.5 Use-case scenarios

In the verification of use-case scenarios, we are given an assumption on the usage
profile of the system, and we want to guarantee that a particular behaviour is
present in the response of the system. A use-case scenario is defined as a sequence of
interactions (labels). It can be either complete (all labels are listed) or partial (given
labels can be interleaved with other labels). In component-based systems, where
the searched behaviour can be interleaved by behaviour of independent components
in the system, the partial scenarios are of higher interest. This section presents
results of verification of the three most complex (partial) scenarios defined in [15].

In contrast with the other verified properties, the use-case scenarios do not state
that for all paths, some property holds (as is usual in the LTL model checking),
but they state that there is a path, along which some property holds (namely the
property representing the sequence of labels). This can be verified with the same
methods, just by negating the property. Note that the properties representing the
use-case scenarios are so large that we do not give their formal representation here.
However, they are a part of the model, which is available at [16].

11

UC scenario 1. CashPayment The scenario reflects cooperation of system com-
ponents to successfully accomplish purchase of goods finished with cash payment.

UC scenario 2. Unsuccessful CardPayment The scenario describes system
reactions to a sale finished with card payment that is refused by the bank.

UC scenario 3. Successful CardPayment The scenario describes component
interaction following a successful sale finished with card payment.

property states transitions | memory | time result

ucl 13 689 354 58190231 3093 MB | 3712 s | scenario found

uc2 11670924 | 49165124 | 2696 MB | 3946 s | scenario found

uc3 11680 736 49202 320 2695 MB | 3147 s | scenario found

5.6 Validity of the model

During modelling, we needed to abstract from aspects of the system that could make
the size of the model unmanageable, while staying confident about the safety of the
abstractions. Two types of abstractions were considered: simplification of the inter-
nal behaviour of primitive components, and simplification of the communicational
scheme. Regarding the communication among components, we evaluated serializa-
tion of selected parallel service calls and changing of some asynchronous calls to
synchronous. The serialization was considered both on required (calling services)
and provided (serving calls) side. This significantly reduced the state space, while
causing no harm when the service calls were independent and their ordering had
no effect on further behaviour of the system. Verification helped us to evaluate
a number of serialization and synchronisation decisions via checking the validity of
the model after the modification.

When checking the validity of the model, we worked with a set of properties
based mainly on the use-case scenarios and test cases defined in the CoCoME Mod-
elling Contest. We also tested the model for deadlocks, because we experienced that
violation of the model validity often results in deadlock situations, either global or
local.

6 Experience and discussion

In this section, we share our modelling and verification experience, discussing some
of the results and observations we have achieved.

Characteristics of the model. As the number of components in the Trading Sys-
tem is quite large, and our modelling language expresses component concurrency

12

through interleaving, the model suffers from state space explosion. However, the
size of the reachable state space does not grow evenly during the hierarchical com-
position of components, but it changes dramatically. The reason for the irregular
changes of the state space is that a composite automaton does not need to be larger
than the automata it is composed of. We have observed cases, where the number of
reachable states has been dramatically reduced by the composition. This is due to
the parametrized operator that can delimit possible behaviour in the composition.
This fact can complicate the estimation of the number of states for a given model.
But on the other hand, it can be exploited to produce a smaller model out of a large
one, as was demonstrated in this case study, where the large Trading System model
has been restricted by adding the cashier.

Deadlocks in the model. After deciding on the model for verification, in the
validation phase, we have checked the model for global and local deadlocks. We
have learned that the existence of deadlock states often signals a modelling error.
A few global deadlocks were found. By careful investigation, we found that these
deadlocks correspond to a behaviour reflecting that two components decide to re-
ceive messages from one of the event channels sent to them in an incorrect order,
thus blocking each other. As we were not provided with the implementation of the
event channels, we can treat this finding in two ways. Either the deadlock reveals
an error in the system, or it reflects an unrealistic behaviour, i.e. the system guards
that the components receive messages in the right order. We decided to treat the
runs leading to the deadlock states as unrealistic, and ignore them during verifica-
tion. This is done implicitly in our verification method, because it verifies infinite
runs only.

Local deadlocks and component-blocking properties. Interesting observa-
tions were made in verifying the local deadlocks and their more strict form, the
component-blocking properties. We have verified many pairs of such properties and
we have found a strong relation between the two kinds. Mostly, it was either the
case that both properties were satisfied, or none of them was. The reasons are sim-
ilar to those explained after property 5, that is, the environment does not wish the
components to compute anything any more. We have, though, found a few cases,
when the local deadlock property holds, but the blocking property does not, and we
have presented one of them. Note that both kinds of properties take advantage of
the enabledness £ operator without which they could not be formulated.

Size of the model/property composition. As may be noticed in Section 5, in
some of the presented cases the state-space size remains (nearly) the same when
the model is composed with the property automaton. This interesting fact deserves
an explanation. The property automata are generated with the effort to make the
resulting composition as small as possible. Then in case of some properties (such
as safety and request/response properties), for every state of the model in the com-
position, there is a unique state in the property automaton. Hence the composition
with the property does not influence the size of the model.

13

Cluster. The experiments presented in this paper were run on a cluster of ten com-
puters. This choice was justified by a number of experiments on various numbers
of computers. A smaller number of workstations would suffice, but the verifica-
tion would get substantially slower in the case of larger property automata (e.g.
the use-case scenarios). On the other hand, larger number of workstations causes
inadequate memory overhead in the case of small property automata. The choice
of ten computers is a reasonable compromise.

7 Conclusion and future work

In this paper, we give a practical application of the presented CI-LTL verification
technique to a large component-based system using a parallel model checking tool
DiVinE. We briefly introduce our modelling language as well as the temporal logic
CI-LTL, a modification of the action based LTL. We have verified a multitude of
properties of the Trading System. Thirteen of them that are of particular inter-
est within the component-oriented software engineering society, are presented here
together with the results of the verification and their discussion. The presented
properties include two basic properties describing the broadcasting ability of the
event-channel components, three properties concerning the possibility of a local
deadlock, two properties addressing the component blocking problem, and three
properties dealing with the problems caused by cycles in the model. The last three
properties are different from the previous. They are used for checking the correct-
ness of the use-case scenarios. Finally, we discuss how the model checking helped
us in creation of the model, and we summarize the experience obtained during
verification, including discussion of some of the results.

The study confirms that the CI automata modelling language suits well both to
capture various types of interactions among individual components in component-
based systems, and to formally verify interaction properties. This distinguishes our
modelling approach from others presented in the CoCoME Modelling Contest [15]
and brings a new value to the area of component-based software engineering. As
the very significant feature of component-based systems is the concurrent behaviour
of individual components and consequently the enormous size of the state space,
distributed and parallel verification techniques are a need for handling these type of
systems. They allowed us to verify very complex properties of the Trading System
when restricted to a usage profile. But still, we were not able to verify the Trading
System with no usage profile added — this means any usage possible with any
number of users — as our hardware capacity did not suffice.

In future, we aim at extending our verification techniques with various reduction
methods to allow us to verify even larger systems. Currently, we explore the pos-
sibilities of two existing reduction techniques, the partial-order reduction and the
symmetry reduction. However, their application in our framework is not straight-
forward, due to the nature of the temporal logic we use. We also try to find new
reduction methods taking advantage of component-specific features.

14

References

[1] Adamek, J. and F. Plasil, Behavior protocols capturing errors and updates, in: Proceedings of the
ETAPS Workshop on Unanticipated Software Evolution (USE’03) (2003), pp. 17-25.

[2] Allen, R. J., “A Formal Approach to Software Architecture,” Ph.D. thesis, Carnegie Mellon University,
School of Computer Science, USA (1997).

[3] Barnat, J., L. Brim and I Cernd, Distributed Analysis of Large Systems, in: Proc. of the 4th
International Symposium on Formal Methods for Components and Objects (FMCO 05), LNCS 2006
(2006), pp. 259-279.

[4] Barnat, J., L. Brim, I. Cernd, P. Moravec, P. Rockai and P. Simecek, Divine — a tool for distributed

verification, in: Proceedings of the Computer Aided Verification conference (CAV’06) (2006), pp. 278—
281.

[5] Becker, S., H. Koziolek and R. Reussner, Modelbased performance prediction with the palladio
component model, in: Proceedings of the International Workshop on Software and Performance
(WOSP’07) (2007), pp. 54-65.

[6] Brim, L., I. Cernd, P. Vafekovéd and B. Zimmerova, Component-Interaction automata as a verification-
oriented component-based system specification, in: Proceedings of the ESEC/FSE Workshop on
Specification and Verification of Component-Based Systems (SAVCBS’05) (2005), pp. 31-38, published
also in ACM SIGSOFT Software Engineering Notes, Volume 31, Issue 2 (March 2006).

[7] Bruneton, E., T. Coupaye, M. Leclercq, V. Quéma and J.-B. Stefani, The fractal component model and
its support in java, Software: Practice and Experience 36 (2006), pp. 1257-1284.

(8] Cerné, L., P. Vafekovd and B. Zimmerova, Component-interaction automata modelling language,
'(I‘echn)ical Report FIMU-RS-2006-08, Masaryk University, Faculty of Informatics, Brno, Czech Republic
2006).

[9] de Alfaro, L. and T. A. Henzinger, Interface-based design, in: Proceedings of the 2004 Marktoberdorf
Summer School (2005), pp. 1 — 25.

[10] DiVinE project web page.
URL http://anna.fi.muni.cz/divine/

[11] Garlan, D., R. T. Monroe and D. Wile, “Foundations of Component-Based Systems,” Cambridge
University Press, USA, 2000 ISBN 0-521-77164-1.

[12] Magee, J., J. Kramer and D. Giannakopoulou, Behaviour analysis of software architectures, in:

Proceedings of the 1st Working IFIP Conference on Software Architecture (WICSA’99) (1999), pp.
35-50.

[13] Plasil, F. and S. Visnovsky, Behavior protocols for software components, IEEE Transactions on Software
Engineering 28 (2002), pp. 1056-1076.

[14] Pnueli, A., The temporal logic of programs, in: Proceedings of the 18th IEEE Symposium on the
Foundations of Computer Science (1977), pp. 46-57.

[15] Rausch, A., R. Reussner, R. Mirandola and F. Plasil, editors, “The Common Component Modeling
Example: Comparing Software Component Models,” To appear in LNCS, 2007.
URL http://www.cocome.org

[16] The Coln Team, The complete Coln model of the Trading System (2007).
URL http://anna.fi.muni.cz/coin/cocome/

[17] Vardi, M. Y., An automata-theoretic approach to linear temporal logic, in: Logics for Concurrency:
Structure versus Automata, LNCS 1043 (1996), pp. 238 — 266.

[18] Zimmerova, B., P. Vaiekovd, N. Benes, I. Cernd, L. Brim and J. Sochor, “The Common
Component Modeling Example: Comparing Software Component Models, chapter Component-
Interaction Automata Approach (Coln),” To appear in LNCS, 2007 .

15

http://anna.fi.muni.cz/divine/
http://www.cocome.org
http://anna.fi.muni.cz/coin/cocome/

	Introduction
	CoCoME Modelling Contest
	Foundations
	Modelling language
	Temporal logic
	Model checking and verification tool

	Model of the Trading System
	Verification of the model
	Basic properties
	Local deadlocks of components
	Blocking of components
	Loop issues
	Use-case scenarios
	Validity of the model

	Experience and discussion
	Conclusion and future work
	References

