J 2008

On a conjecture concerning minus parts in the style of Gross

GREITHER, Cornelius and Radan KUČERA

Basic information

Original name

On a conjecture concerning minus parts in the style of Gross

Name in Czech

O hypotéze týkající se minus částí ve stylu Grosse

Authors

GREITHER, Cornelius (276 Germany) and Radan KUČERA (203 Czech Republic, guarantor)

Edition

Acta Arithmetica, 2008, 0065-1036

Other information

Language

English

Type of outcome

Článek v odborném periodiku

Field of Study

10101 Pure mathematics

Country of publisher

Poland

Confidentiality degree

není předmětem státního či obchodního tajemství

Impact factor

Impact factor: 0.467

RIV identification code

RIV/00216224:14310/08:00025891

Organization unit

Faculty of Science

UT WoS

000258702800001

Keywords in English

Stark units; regulators; Gross conjecture on tori

Tags

International impact, Reviewed
Změněno: 25/6/2009 11:08, prof. RNDr. Radan Kučera, DSc.

Abstract

V originále

This paper is devoted to Gross's conjecture on tori over the base field Q. We call it the Minus Conjecture, since it involves a regulator built from units in the minus part. We recall and develop its relation to a conjecture of Burns, which is now known to hold generally in the absolutely abelian setting; however in many situations it is not clear at all how one should deduce the Minus Conjecture from it. We prove a somewhat weaker statement (order of vanishing) rather generally, and we give a proof of the Minus Conjecture for some specific classes of absolutely abelian extensions K/Q, for which K^+/Q is l-elementary and ramified in at most two primes. The field K is assumed to be of the form FK^+ where F is an arbitrary imaginary quadratic field. Our methods involve a good deal of explicit calculation; among other things, we use p-adic Gamma-functions and the Gross-Koblitz formula.

In Czech

Tento článek je věnován Grossově hypotéze o toru nad základním tělesem Q, kterou nazýváme Minus hypotézou, protože zahrnuje regulátor sestrojený z jednotek z minus části. Připomeneme a rozvineme její vztah k Burnsově hypotéze, o které je nyní známo, že platí v absolutně abelovském případě; avšak v mnoha situacích není jasné, jak z ní odvodit Minus hypotézu. Dokážeme poněkud slabší tvrzení (řád nulovosti) poměrně obecně a podáme důkaz Minus hypotézy pro některé specifické třídy absolutně abelovských rozšíření K/Q, pro která K^+/Q je l-elementární a větví se nejvýše ve dvou prvočíslech. O tělese K předpokládáme, že je tvaru FK^+, kde F je libovolné imaginární kvadratické těleso. Naše metody zahrnují notný díl explicitních výpočtů; mimo jiné užíváme p-adickou Gamma-funkci a Gross-Koblitzovu formuli.

Links

MSM0021622409, plan (intention)
Name: Matematické struktury a jejich fyzikální aplikace
Investor: Ministry of Education, Youth and Sports of the CR, Mathematical structures and their physical applications