J 2008

T-duality and Generalized Kahler Geometry.

LINDSTRÖM, Ulf, Martin ROČEK, Itai RYB, Rikard VON UNGE, Maxim ZABZINE et. al.

Basic information

Original name

T-duality and Generalized Kahler Geometry.

Name in Czech

T-dualita a zobecňení komplexní geometrie.

Authors

LINDSTRÖM, Ulf (752 Sweden), Martin ROČEK (840 United States of America), Itai RYB (380 Italy), Rikard VON UNGE (752 Sweden, guarantor, belonging to the institution) and Maxim ZABZINE (643 Russian Federation)

Edition

Journal of High Energy Physics, CERN, 2008, 1126-6708

Other information

Language

English

Type of outcome

Článek v odborném periodiku

Field of Study

10303 Particles and field physics

Country of publisher

United Kingdom of Great Britain and Northern Ireland

Confidentiality degree

není předmětem státního či obchodního tajemství

References:

Impact factor

Impact factor: 5.375

RIV identification code

RIV/00216224:14310/08:00050980

Organization unit

Faculty of Science

UT WoS

000254764400056

Keywords in English

supersymmetry; generalized complex geometry

Tags

International impact, Reviewed
Změněno: 20/4/2012 09:20, Ing. Andrea Mikešková

Abstract

V originále

We use newly discovered N = (2, 2) vector multiplets to clarify T-dualities for generalized Kahler geometries. Following the usual procedure, we gauge isometries of nonlinear sigma-models and introduce Lagrange multipliers that constrain the field-strengths of the gauge fields to vanish. Integrating out the Lagrange multipliers leads to the original action, whereas integrating out the vector multiplets gives the dual action. The description is given both in N = (2, 2) and N = (1, 1) superspace.

In Czech

Použiváme nově nalezené N=(2,2) vektorové multiplety abychom objasnili T-duality pro zobecňení Kählerová geometrii. Obvyklým způsobem kalibrujeme isometrii nelinearních sigma modely a přidáme Lagrangeovy multiplikátory které podmíní fieldstrength aby byl nula. Když integrujeme vektorový multiplety dostaneme duální účinek. Popis je v N=(2,2) i v N=(1,1) superprostoru.

Links

MSM0021622409, plan (intention)
Name: Matematické struktury a jejich fyzikální aplikace
Investor: Ministry of Education, Youth and Sports of the CR, Mathematical structures and their physical applications