V originále
This paper gives a uniform, self-contained, and fairly direct approach to a variety of obstruction-theoretic problems on 8-manifolds. It gives necessary and sufficient cohomological criteria for the existence of complex and quaternionic structures on eight-dimensional vector bundles and for the reduction of the structure group of such bundles to U(3) by the homomorphism from U(3) to O(8) given by the Lie algebra representation of PU(3).
In Czech
V článku je prezentován jednotný přístup k mnoha problémům existence různých struktur na varietách dimenze 8. Práce uvádí nutné a postačující podmínky pro existenci komplexních a kvaternionických struktur na vektorových bandlech dimenze 8 nad varietou stejné dimenze a pro redukci strukturní grupy takových bandlů k U(3) prostřednictvím adjungované reprezentace PU(3).