D 2008

NUMERICAL SIMULATION OF ATMOSPHERIC PRESSURE TOWNSEND DISCHARGES IN NITROGEN WITH HYDROGEN GAS ADMIXTURES

JÁNSKÝ, Jaroslav, David TRUNEC, Zdeněk NAVRÁTIL, Ronny BRANDENBURG, Hans-Erich WAGNER et. al.

Základní údaje

Originální název

NUMERICAL SIMULATION OF ATMOSPHERIC PRESSURE TOWNSEND DISCHARGES IN NITROGEN WITH HYDROGEN GAS ADMIXTURES

Název česky

Numerická simulace Townsendovského výboje za atmosférického tlaku v dusíku s příměsí vodíku

Autoři

JÁNSKÝ, Jaroslav (203 Česká republika), David TRUNEC (203 Česká republika, garant), Zdeněk NAVRÁTIL (203 Česká republika), Ronny BRANDENBURG (276 Německo) a Hans-Erich WAGNER (276 Německo)

Vydání

Francie, Proccedings of HAKONE X, od s. 1-5, 5 s. 2008

Nakladatel

University of Toulouse

Další údaje

Jazyk

angličtina

Typ výsledku

Stať ve sborníku

Obor

10305 Fluids and plasma physics

Stát vydavatele

Francie

Utajení

není předmětem státního či obchodního tajemství

Kód RIV

RIV/00216224:14310/08:00025015

Organizační jednotka

Přírodovědecká fakulta

Klíčová slova anglicky

electrical discharge; atmospheric pressure; nitrogen

Štítky

atmospheric pressure, electrical discharge, Nitrogen

Příznaky

Mezinárodní význam
Změněno: 10. 11. 2008 18:44, prof. RNDr. David Trunec, CSc.

Anotace

ORIG CZ

V originále

In this contribution the influence of hydrogen admixture on an Atmospheric Pressure Townsend Discharge (APTD) in nitrogen is investigated by means of numerical modelling and experiments. The numerical model is a one-dimensional fluid model. Electron emission from dielectrics by a diffusion flux of metastable molecules and photoemission are incorporated in the model. The secondary emission due to ions is neglected. The results are compared with measured electrical parameters (ignition voltage, voltage necessary for causing the transition to the filamentary regime and current evolution). The measured and simulated current profiles of discharge in nitrogen-hydrogen mixture are similar for applied voltages close to ignition voltage. The simulations give a qualitative explanation for the measured current profiles in pure nitrogen and for small admixtures of hydrogen. The results indicate that the influence of hydrogen on the APTD is due to the quenching of the main metastable state N2(A 3 Sigma+ u ) by hydrogen molecules and atoms. Generally a APTD typical one peak current structure is caused by secondary electron emission by nitrogen metastable molecules, a current pulse with multiple peaks is caused mainly by secondary emission of ions or photoemission.

Česky

In this contribution the influence of hydrogen admixture on an Atmospheric Pressure Townsend Discharge (APTD) in nitrogen is investigated by means of numerical modelling and experiments. The numerical model is a one-dimensional fluid model. Electron emission from dielectrics by a diffusion flux of metastable molecules and photoemission are incorporated in the model. The secondary emission due to ions is neglected. The results are compared with measured electrical parameters (ignition voltage, voltage necessary for causing the transition to the filamentary regime and current evolution). The measured and simulated current profiles of discharge in nitrogen-hydrogen mixture are similar for applied voltages close to ignition voltage. The simulations give a qualitative explanation for the measured current profiles in pure nitrogen and for small admixtures of hydrogen. The results indicate that the influence of hydrogen on the APTD is due to the quenching of the main metastable state N2(A 3 Sigma+ u ) by hydrogen molecules and atoms. Generally a APTD typical one peak current structure is caused by secondary electron emission by nitrogen metastable molecules, a current pulse with multiple peaks is caused mainly by secondary emission of ions or photoemission.

Návaznosti

GA202/06/1473, projekt VaV
Název: Depozice tenkých vrstev v dielektrických bariérových výbojích za atmosférického tlaku
Investor: Grantová agentura ČR, Depozice tenkých vrstev v dielektrických bariérových výbojích za atmosférického tlaku
Zobrazeno: 4. 11. 2024 16:30