J 2007

Self-Regulating Finite Automata

MEDUNA, Alexander and Tomáš MASOPUST

Basic information

Original name

Self-Regulating Finite Automata

Authors

MEDUNA, Alexander and Tomáš MASOPUST

Edition

Acta Cybernetica, Szeged, University Szeged, 2007, 0324-721X

Other information

Language

English

Type of outcome

Článek v odborném periodiku

Field of Study

10201 Computer sciences, information science, bioinformatics

Confidentiality degree

není předmětem státního či obchodního tajemství

References:

Organization unit

Faculty of Informatics

Keywords in English

regulated automata; self-regulation; infinite hierarchies of language families; parallel right linear grammars, right linear simple matrix grammars

Tags

International impact, Reviewed
Změněno: 18/12/2008 22:12, doc. RNDr. Tomáš Masopust, Ph.D., DSc.

Abstract

V originále

This paper introduces and discusses {\em self-regulating finite automata}. In essence, these automata regulate the use of their rules by a sequence of rules applied during previous moves. A special attention is paid to {\em turns} defined as moves during which a self-regulating finite automaton starts a new self-regulating sequence of moves. Based on the number of turns, the present paper establishes two infinite hierarchies of language families resulting from two variants of these automata. In addition, it demonstrates that these hierarchies coincide with the hierarchies resulting from parallel right linear grammars and right linear simple matrix grammars, so the self-regulating finite automata can be viewed as the automaton counterparts to these grammars. Finally, this paper compares both infinite hierarchies. In addition, as an open problem area, it suggests the discussion of self-regulating pushdown automata and points out that they give rise to no infinite hierarchy analogical to the achieved hierarchies resulting from the self-regulating finite automata.

In Czech

Zavedení a studium sebeřídících konečných automatů.