Informační systém MU
HRDINA, Jaroslav and Jan SLOVÁK. Morphisms of almost product projective geometries. In Differential geometry and its applications. 2008th ed. USA: World Scientific, 2008. p. 243-251. ISBN 978-981-279-060-6.
Other formats:   BibTeX LaTeX RIS
Basic information
Original name Morphisms of almost product projective geometries
Name in Czech Zobrazení mezi skoro součinovými projektivnímy geometriemi
Authors HRDINA, Jaroslav (203 Czech Republic, guarantor) and Jan SLOVÁK (203 Czech Republic).
Edition 2008. vyd. USA, Differential geometry and its applications, p. 243-251, 9 pp. 2008.
Publisher World Scientific
Other information
Original language English
Type of outcome Proceedings paper
Field of Study 10101 Pure mathematics
Country of publisher United States of America
Confidentiality degree is not subject to a state or trade secret
RIV identification code RIV/00216224:14310/08:00025129
Organization unit Faculty of Science
ISBN 978-981-279-060-6
Keywords in English deferential geometry;parabolic geometry; planar curves; almost product structure; weyl connections
Tags almost product structure, deferential geometry, parabolic geometry, planar curves, weyl connections
Tags Reviewed
Changed by Changed by: doc. Mgr. Jaroslav Hrdina, Ph.D., učo 8608. Changed: 25/1/2009 21:15.
Abstract
We discuss almost product projective geometry and the relations to a distinguished class of curves. Our approach is based on an observation that well known general techniques apply, and our goal is to illustrate the power of the general parabolic geometry theory on a quite explicit example. Therefore, some rudiments of the general theory are mentioned on the way, too.
Abstract (in Czech)
Zkoumáme skoro součinovou strukturu vzhledem k význačným třídám křivek. Naše práce je založena na známých technikách parabolické geometrie a našim cílem je ilustrovat tak jejich sílu na konkrétním příkladě.
Links
GA201/05/2117, research and development projectName: Algebraické metody v topologii a geometrii
Investor: Czech Science Foundation
GD201/05/H005, research and development projectName: Algebra a geometrie: propojení a trendy v současné matematice
Investor: Czech Science Foundation, Algebra and Geometry: the reunion and trends in current mathematics
Displayed: 21/3/2023 12:36