Detailed Information on Publication Record
2008
Thrips (Thysanoptera) identification using artificial neural networks
FEDOR, Peter, Igor MALENOVSKÝ, Jaromír VAŇHARA, W. SIERKA, Josef HAVEL et. al.Basic information
Original name
Thrips (Thysanoptera) identification using artificial neural networks
Name in Czech
Determinace třásněnek za pomoci ANN.
Authors
FEDOR, Peter (703 Slovakia), Igor MALENOVSKÝ (203 Czech Republic), Jaromír VAŇHARA (203 Czech Republic, guarantor, belonging to the institution), W. SIERKA (616 Poland) and Josef HAVEL (203 Czech Republic, belonging to the institution)
Edition
Bulletin of Entomological Research, Cambridge, England, CAMBRIDGE UNIV PRESS, 2008, 0007-4853
Other information
Language
English
Type of outcome
Článek v odborném periodiku
Field of Study
10600 1.6 Biological sciences
Country of publisher
United Kingdom of Great Britain and Northern Ireland
Confidentiality degree
není předmětem státního či obchodního tajemství
Impact factor
Impact factor: 1.415
RIV identification code
RIV/00216224:14310/08:00027185
Organization unit
Faculty of Science
UT WoS
000260173700002
Keywords in English
ANN; Thrips;identification
Tags
Tags
International impact, Reviewed
Změněno: 19/3/2013 15:37, prof. RNDr. Jaromír Vaňhara, CSc.
V originále
We studied the use of a supervised artificial neural network (ANN) model for semi-automated identification of 18 common European species of Thysanoptera from four genera: Aeolothrips Haliday (Aeolothripidae), Chirothrips Haliday, Dendrothrips Uzel, and Limothrips Haliday (all Thripidae). As input data, we entered 17 continuous morphometric and two qualitative two-state characters measured or determined on different parts of the thrips body (head, pronotum, forewing and ovipositor) and the sex. Our experimental data set included 498 thrips specimens. A relatively simple ANN architecture (multilayer perceptrons with a single hidden layer) enabled a 97% correct simultaneous identification of both males and females of all the 18 species in an independent test. This high reliability of classification is promising for a wider application of ANN in the practice of Thysanoptera identification.
In Czech
Modelové využití supervised artificial neural network (ANN) pro identifikaci 18 evropských druhů trásněnek 4 rodů.
Links
MSM0021622416, plan (intention) |
|