J 2008

Can physicochemical and microbial soil properties explain enantiomeric shifts of chiral organochlorines?

KOBLIŽKOVÁ, Martina, Ladislav DUŠEK, Jiří JARKOVSKÝ, Jakub HOFMAN, Thomas BUCHELI et. al.

Basic information

Original name

Can physicochemical and microbial soil properties explain enantiomeric shifts of chiral organochlorines?

Name in Czech

Mohou fyzikálně-chemické vlastnosti půd vysvětlit enantiomerní posuny u chirálních organochlorových látek?

Authors

KOBLIŽKOVÁ, Martina (203 Czech Republic), Ladislav DUŠEK (203 Czech Republic), Jiří JARKOVSKÝ (203 Czech Republic), Jakub HOFMAN (203 Czech Republic), Thomas BUCHELI (756 Switzerland) and Jana KLÁNOVÁ (203 Czech Republic, guarantor)

Edition

Environmental Science & Technology, USA, The American Chemical Society, 2008, 0013-936X

Other information

Language

English

Type of outcome

Článek v odborném periodiku

Field of Study

10511 Environmental sciences

Country of publisher

United States of America

Confidentiality degree

není předmětem státního či obchodního tajemství

Impact factor

Impact factor: 4.458

RIV identification code

RIV/00216224:14310/08:00027891

Organization unit

Faculty of Science

UT WoS

000258439600025

Keywords (in Czech)

ATROPISOMERIC POLYCHLORINATED-BIPHENYLS; MULTIDIMENSIONAL GAS-CHROMATOGRAPHY; HUMAN-MILK SAMPLES; ENANTIOMER FRACTIONS; MASS-SPECTROMETRY; PESTICIDES; RATIOS; BIOMASS; AIR; DEGRADATION

Keywords in English

ATROPISOMERIC POLYCHLORINATED-BIPHENYLS; MULTIDIMENSIONAL GAS-CHROMATOGRAPHY; HUMAN-MILK SAMPLES; ENANTIOMER FRACTIONS; MASS-SPECTROMETRY; PESTICIDES; RATIOS; BIOMASS; AIR; DEGRADATION

Tags

International impact, Reviewed
Změněno: 25/6/2009 10:17, prof. RNDr. Luděk Bláha, Ph.D.

Abstract

V originále

Enantiomeric fractions (EF) of PCB 95, 132, 149, and 174, alpha-HCH, o,p'-DDD, and o,p'-DDT were analyzed in 112 soil samples using two-dimensional gas chromatography and triple-quadrupole mass spectrometry. To assess the soil conditions that facilitate enantioselective fractionation of chiral compounds, EF values of selected PCBs were further correlated with a wide range of physicochemical and microbial soil parameters in an attempt to identify the influential factors and their mutual relations. It was evident that soils where nonracemic ratios of investigated compounds were found were more carbon rich but they also contained significantly more humic and fulvic acids and total nitrogen. These specific physicochemical properties were accompanied by significantly increased values of all key biotic variables, the amount of microbial biomass, and its respiration activity (both basal and substrate-induced). Therefore, the shifts from racemic ratios appeared to be associated with more sustainable and active soil microflora. Among other abiotic characteristics, most significant differences were detected in the soil texture. Soil samples with significant shifts contained increased amount of clay component and correspondingly decreased proportion of sand fraction. These differences can also be associated with more intensive microbial activity, because clay content and texture with an increased amount of microaggregates are known to be favorable for soil microflora and its viability.

In Czech

Enantiomeric fractions (EF) of PCB 95, 132, 149, and 174, alpha-HCH, o,p'-DDD, and o,p'-DDT were analyzed in 112 soil samples using two-dimensional gas chromatography and triple-quadrupole mass spectrometry. To assess the soil conditions that facilitate enantioselective fractionation of chiral compounds, EF values of selected PCBs were further correlated with a wide range of physicochemical and microbial soil parameters in an attempt to identify the influential factors and their mutual relations. It was evident that soils where nonracemic ratios of investigated compounds were found were more carbon rich but they also contained significantly more humic and fulvic acids and total nitrogen. These specific physicochemical properties were accompanied by significantly increased values of all key biotic variables, the amount of microbial biomass, and its respiration activity (both basal and substrate-induced). Therefore, the shifts from racemic ratios appeared to be associated with more sustainable and active soil microflora. Among other abiotic characteristics, most significant differences were detected in the soil texture. Soil samples with significant shifts contained increased amount of clay component and correspondingly decreased proportion of sand fraction. These differences can also be associated with more intensive microbial activity, because clay content and texture with an increased amount of microaggregates are known to be favorable for soil microflora and its viability.

Links

MSM0021622412, plan (intention)
Name: Interakce mezi chemickými látkami, prostředím a biologickými systémy a jejich důsledky na globální, regionální a lokální úrovni (INCHEMBIOL) (Acronym: INCHEMBIOL)
Investor: Ministry of Education, Youth and Sports of the CR, Interactions among the chemicals, environment and biological systems and their consequences on the global, regional and local scales (INCHEMBIOL)