J 2009

Information Content Analysis in Automated Microscopy Imaging using an Adaptive Autofocus Algorithm for Multimodal Functions

BRÁZDILOVÁ, Silvie Luisa and Michal KOZUBEK

Basic information

Original name

Information Content Analysis in Automated Microscopy Imaging using an Adaptive Autofocus Algorithm for Multimodal Functions

Name in Czech

Analýza informačního obsahu v automatizované mikroskopii pomocí adaptivního samozaostřovacího algoritmu pro multimodální fuknce

Authors

BRÁZDILOVÁ, Silvie Luisa (203 Czech Republic, belonging to the institution) and Michal KOZUBEK (203 Czech Republic, guarantor, belonging to the institution)

Edition

Journal of Microscopy, Oxford, Blackwell Science, 2009, 0022-2720

Other information

Language

English

Type of outcome

Článek v odborném periodiku

Field of Study

20200 2.2 Electrical engineering, Electronic engineering, Information engineering

Country of publisher

United Kingdom of Great Britain and Northern Ireland

Confidentiality degree

není předmětem státního či obchodního tajemství

Impact factor

Impact factor: 1.612

RIV identification code

RIV/00216224:14330/09:00035554

Organization unit

Faculty of Informatics

UT WoS

000271974200005

Keywords in English

automated microscopy; information content analysis; autofocusing; normalized variance

Tags

International impact, Reviewed
Změněno: 10/3/2018 16:43, prof. RNDr. Michal Kozubek, Ph.D.

Abstract

V originále

We present a new algorithm to analyse information content in images acquired using automated fluorescence microscopy. The algorithm belongs to the group of autofocusing methods, but differs from its predecessors in that it can handle thick specimens and operate also in confocal mode. It measures the information content in images using a "content function", which is essentially the same concept as a focus function. Unlike previously presented algorithms, this algorithm tries to find all significant axial positions in cases where the content function applied to real data is not unimodal, which is often the case. This requirement precludes using algorithms that rely on unimodality. Moreover, choosing a content function requires careful consideration, because some functions suppress local maxima. First, we test 19 content functions and evaluate their ability to show local maxima clearly. The results show that only six content functions succeed. To save time, the acquisition procedure needs to vary the step size adaptively, because a wide range of possible axial positions has to be passed so as not to miss a local maximum. The algorithm therefore has to assess the steepness of the content function on-line so that it can decide to use a bigger or smaller step size to acquire the next image. Therefore, the algorithm needs to know about typical behaviour of content functions. We show that for Normalized Variance, one of the most promising content functions, this knowledge can be obtained after normalizing with respect to the theoretical maximum of this function, and using hierarchical clustering. The resulting algorithm is more reliable and efficient than a simple procedure with constant steps.

In Czech

Práce se věnuje analýze informačního obsahu v automatizované mikroskopii pomocí adaptivního samozaostřovacího algoritmu pro multimodální fuknce

Links

LC535, research and development project
Name: Dynamika a organizace chromosomů během buněčného cyklu v normě a patologii
Investor: Ministry of Education, Youth and Sports of the CR, Dynamika a organizace chromosomů během buněčného cyklu v normě a patologii
MSM0021622419, plan (intention)
Name: Vysoce paralelní a distribuované výpočetní systémy
Investor: Ministry of Education, Youth and Sports of the CR, Highly Parallel and Distributed Computing Systems
2B06052, research and development project
Name: Vytipování markerů, screening a časná diagnostika nádorových onemocnění pomocí vysoce automatizovaného zpracování multidimenzionálních biomedicínských obrazů (Acronym: Biomarker)
Investor: Ministry of Education, Youth and Sports of the CR, Determination of markers, screening and early diagnostics of cancer diseases using highly automated processing of multidimensional biomedical images