J 2009

Nonmalleable encryption of quantum information

AMBAINIS, Andris, Jan BOUDA and Andreas WINTER

Basic information

Original name

Nonmalleable encryption of quantum information

Name in Czech

Nonmalleabilní šifrování kvantové informace

Authors

AMBAINIS, Andris (428 Latvia), Jan BOUDA (203 Czech Republic, guarantor) and Andreas WINTER (276 Germany)

Edition

Journal of Mathematical Physics, USA, American Institute of Physics, 2009, 0022-2488

Other information

Language

English

Type of outcome

Článek v odborném periodiku

Field of Study

10201 Computer sciences, information science, bioinformatics

Country of publisher

United States of America

Confidentiality degree

není předmětem státního či obchodního tajemství

Impact factor

Impact factor: 1.318

RIV identification code

RIV/00216224:14330/09:00029310

Organization unit

Faculty of Informatics

UT WoS

000266596800006

Keywords in English

quantum information processing; encryption; non-malleability; unitary k-design

Tags

International impact, Reviewed
Změněno: 31/5/2009 11:42, doc. RNDr. Jan Bouda, Ph.D.

Abstract

V originále

We introduce the notion of nonmalleability of a quantum state encryption scheme (in dimension d): in addition to the requirement that an adversary cannot learn information about the state, here we demand that no controlled modification of the encrypted state can be effected. We show that such a scheme is equivalent to a unitary 2-design [Dankert, et al., e-print arXiv:quant-ph/0606161], as opposed to normal encryption which is a unitary 1-design. Our other main results include a new proof of the lower bound of (d2-1)2+1 on the number of unitaries in a 2-design [Gross, et al., J. Math. Phys. 48, 052104 (2007)], which lends itself to a generalization to approximate 2-design. Furthermore, while in prime power dimension there is a unitary 2-design with <=d5 elements, we show that there are always approximate 2-designs with O(\epsilon-2d4 log d) elements.

In Czech

V tomto článku definujeme bezpodmínečně bezpečnou non-malleabilitu pro šifrování kvantové informace. Dále dokazujeme, že tato je ekvivalentní unitárnímu 2-designu, což dává výsledky ohledně optimality klíče.

Links

GA201/07/0603, research and development project
Name: Výpočty, komunikace a bezpečnost kvantových distribuovaných systémů
Investor: Czech Science Foundation, Quantum multipartite computation, communication and security
MSM0021622419, plan (intention)
Name: Vysoce paralelní a distribuované výpočetní systémy
Investor: Ministry of Education, Youth and Sports of the CR, Highly Parallel and Distributed Computing Systems