ŠIMON HILSCHER, Roman and Petr ZEMÁNEK. Definiteness of quadratic functionals for Hamiltonian and symplectic systems: A survey. International Journal of Difference Equations. Delhi (Indie): Research India Publications, 2009, vol. 4, No 1, p. 49-67. ISSN 0973-6069.
Other formats:   BibTeX LaTeX RIS
Basic information
Original name Definiteness of quadratic functionals for Hamiltonian and symplectic systems: A survey
Name in Czech Definitnost kvadratických funkcionálů pro Hamiltonovské a symplektické systémy: Přehled výsledků
Authors ŠIMON HILSCHER, Roman (203 Czech Republic, guarantor, belonging to the institution) and Petr ZEMÁNEK (203 Czech Republic, belonging to the institution).
Edition International Journal of Difference Equations, Delhi (Indie), Research India Publications, 2009, 0973-6069.
Other information
Original language English
Type of outcome Article in a journal
Field of Study 10101 Pure mathematics
Country of publisher India
Confidentiality degree is not subject to a state or trade secret
RIV identification code RIV/00216224:14310/09:00028574
Organization unit Faculty of Science
Keywords (in Czech) Lineární Hamiltonovský systém; Diskrétní symplektický systém; Časová škála; Symplektický systém na časové škále; Kvadratický funkcionál; Izotropická báze; Fokální bod; Nezápornost; Pozitivita
Keywords in English Linear Hamiltonian system; Discrete symplectic system; Time scale; Time scale symplectic system; Quadratic functional; Conjoined basis; Focal point; Nonnegativity; Positivity
Tags International impact, Reviewed
Changed by Changed by: doc. Mgr. Petr Zemánek, Ph.D., učo 78442. Changed: 13. 3. 2012 14:30.
Abstract
In this paper we provide a survey of characterizations of the nonnegativity and positivity of quadratic functionals arising in the theory of linear Hamiltonian and symplectic systems. We study these functionals on traditional continuous time domain (under and without controllability), on discrete domain, and on time scale domain which unifies and extends both previous types. For each case we distinguish functionals with zero, separated, and jointly varying endpoints. The presented conditions are formulated in terms of the properties of a special conjoined basis of the considered linear system. It is now easy to compare all the results - between continuous, discrete, and time scale cases, between the zero, separated, and jointly varying endpoits, and between the nonnegativity and positivity.
Abstract (in Czech)
V tomto článku uvádíme přehled charakterizací nezápornosti a pozitivity kvadratických funkcionálů, které se vyskytují v teorii lineárních Hamiltonovských a symplektických systémů. Tyto funkcionály studujeme v tradičním spojitém případě, v diskrétním případě, a na časové škále, což sjednocuje a zobecňuje oba předchozí typy. Pro každý speciální případ rozlišujeme funkcionály s nulovými, separovanými a obecnými okrajovými podmínkami. Uvedené podmínky jsou formulovány pomocí vlastností speciální izotropické báze uvažovaného lineárního systému. Nyní je možné snadno porovnat všechny výsledky vzájemně mezi soubou - mezi spojitým a diskétním případem a případem na časové škále, mezi nulovými, separovanými a obecnými okrajovými podmínkami, a mezi nezáporností a pozitivitou.
Links
GA201/07/0145, research and development projectName: Diferenční rovnice a dynamické rovnice na ,,time scales'' II
Investor: Czech Science Foundation, Standard Projects
KJB100190701, research and development projectName: Asymptotika, oscilace a kvadratické funkcionály v teorii dynamických rovnic
Investor: Academy of Sciences of the Czech Republic, The research grant projects for juniors
ME 891, research and development projectName: Podmínky optimality druhého řádu pro optimalizační problémy
Investor: Ministry of Education, Youth and Sports of the CR, Programme KONTAKT (ME+MEB), Research and Development Programme KONTAKT (ME)
MSM0021622409, plan (intention)Name: Matematické struktury a jejich fyzikální aplikace
Investor: Ministry of Education, Youth and Sports of the CR, Research Intents
Type Name Uploaded/Created by Uploaded/Created Rights
Definiteness_of_quadratic_functionals_for_Hamiltonian_and_symplectic_systems_-_A_survey__Hilscher___Zemanek_.pdf   File version Zemánek, P. 13. 3. 2012

Rights

Right to read
 
Right to upload
 
Right to administer:
  • a concrete person prof. RNDr. Roman Šimon Hilscher, DSc., učo 1023
  • a concrete person doc. Mgr. Petr Zemánek, Ph.D., učo 78442
Attributes
 
Print
Ask the author for author copy Displayed: 24. 7. 2021 13:05