Detailed Information on Publication Record
2011
An Improved Riemannian Metric Approximation for Graph Cuts
DANĚK, Ondřej and Pavel MATULABasic information
Original name
An Improved Riemannian Metric Approximation for Graph Cuts
Name in Czech
Vylepšená aproximace Riemannovské metriky pomocí grafových řezů
Authors
DANĚK, Ondřej (203 Czech Republic, guarantor, belonging to the institution) and Pavel MATULA (203 Czech Republic, belonging to the institution)
Edition
Berlin, Heidelberg, 16th International Conference on Discrete Geometry for Computer Imagery, p. 71-82, 12 pp. 2011
Publisher
Springer-Verlag
Other information
Language
English
Type of outcome
Stať ve sborníku
Field of Study
10201 Computer sciences, information science, bioinformatics
Country of publisher
Germany
Confidentiality degree
není předmětem státního či obchodního tajemství
Publication form
printed version "print"
References:
Impact factor
Impact factor: 0.402 in 2005
RIV identification code
RIV/00216224:14330/11:00067211
Organization unit
Faculty of Informatics
ISBN
978-3-642-19866-3
ISSN
UT WoS
000297039900006
Keywords in English
graph cuts; metric approximation; Riemannian metrics; image segmentation
Tags
International impact, Reviewed
Změněno: 30/4/2014 03:56, RNDr. Pavel Šmerk, Ph.D.
V originále
Boykov and Kolmogorov showed that it is possible to find globally minimal contours and surfaces via graph cuts by embedding an appropriate metric approximation into the graph edge weights and derived the requisite formulas for Euclidean and Riemannian metrics. In [2] we have proposed an improved Euclidean metric approximation that is invariant under (horizontal and vertical) mirroring, applicable to grids with anisotropic resolution and with a smaller approximation error. In this paper, we extend our method to general Riemannian metrics that are essential for graph cut based image segmentation or stereo matching. It is achieved by the introduction of a transformation reducing the Riemannian case to the Euclidean one and adjusting the formulas from [9] to be able to cope with non-orthogonal grids. We demonstrate that the proposed method yields smaller approximation errors than the previous approaches both in theory and practice.
In Czech
Článek se zabývá aproximací Riemannovské metriky pomocí grafových řezů.
Links
LC535, research and development project |
| ||
MSM0021622419, plan (intention) |
| ||
MUNI/A/0914/2009, interní kód MU |
| ||
2B06052, research and development project |
|