D 2011

Proximity-based Order-respecting Intersection for Searching in Image Databases

HOMOLA, Tomáš, Vlastislav DOHNAL and Pavel ZEZULA

Basic information

Original name

Proximity-based Order-respecting Intersection for Searching in Image Databases

Authors

HOMOLA, Tomáš (203 Czech Republic, belonging to the institution), Vlastislav DOHNAL (203 Czech Republic, guarantor, belonging to the institution) and Pavel ZEZULA (203 Czech Republic, belonging to the institution)

Edition

Linz, 8th International Workshop on Adaptive Multimedia Retrieval, AMR'2010, p. 174-188, 15 pp. 2011

Publisher

Johannes Kepler University

Other information

Language

English

Type of outcome

Stať ve sborníku

Field of Study

10201 Computer sciences, information science, bioinformatics

Country of publisher

Austria

Confidentiality degree

není předmětem státního či obchodního tajemství

Publication form

printed version "print"

Impact factor

Impact factor: 0.402 in 2005

RIV identification code

RIV/00216224:14330/11:00081752

Organization unit

Faculty of Informatics

ISBN

978-3-642-27168-7

ISSN

UT WoS

000306440900013

Keywords in English

proximity based order respecting intersection; sub image search; image database; experimental trials

Tags

Tags

International impact, Reviewed
Změněno: 6/5/2016 08:48, RNDr. Pavel Šmerk, Ph.D.

Abstract

V originále

As the volume of non-textual data, such images and other multimedia data, available on Internet is increasing. The issue of identifying data items based on query containment rather than query equality is more and more important. In this paper, we propose a solution to this problem. We assume the local descriptors are extracted from data item, so the aforementioned problem reduces to finding data items of a collection that share as many as possible local descriptors with the query. In particular, we defined a new e-intersection that identifies close (similar) descriptors. Local descriptors usually contain the location of the descriptors in the original data, so the proposed solution takes into account them to increase effectiveness of searching. We evaluate the e-intersection on two real-life image collections using SIFT and SURF local descriptors.

Links

GAP103/10/0886, research and development project
Name: Vizuální vyhledávání obrázků na Webu (Acronym: VisualWeb)
Investor: Czech Science Foundation, Content-based Image Retrieval on the Web Scale
GA201/09/0683, research and development project
Name: Vyhledávání v rozsáhlých multimediálních databázích
Investor: Czech Science Foundation, Similarity Searching in Very Large Multimedia Databases
MUNI/A/0922/2009, interní kód MU
Name: Aplikovaný výzkum Fakulty informatiky (Acronym: AVFI)
Investor: Masaryk University, Category A