Detailed Information on Publication Record
2011
On Euclidean Metric Approximation via Graph Cuts
DANĚK, Ondřej and Pavel MATULABasic information
Original name
On Euclidean Metric Approximation via Graph Cuts
Name in Czech
Aproximace Euklidovské metriky pomocí grafových řezů
Authors
DANĚK, Ondřej (203 Czech Republic, guarantor, belonging to the institution) and Pavel MATULA (203 Czech Republic, belonging to the institution)
Edition
Berlin, Heidelberg, Computer Vision, Imaging and Computer Graphics. Theory and Applications. p. 125-134, 11 pp. 2011
Publisher
Springer-Verlag
Other information
Language
English
Type of outcome
Stať ve sborníku
Field of Study
10201 Computer sciences, information science, bioinformatics
Country of publisher
Germany
Confidentiality degree
není předmětem státního či obchodního tajemství
Publication form
printed version "print"
References:
RIV identification code
RIV/00216224:14330/11:00067229
Organization unit
Faculty of Informatics
ISBN
978-3-642-25381-2
ISSN
UT WoS
000309949200009
Keywords in English
graph cuts; euclidean metric; anisotropic grids; image segmentation
Tags
International impact, Reviewed
Změněno: 30/4/2014 04:08, RNDr. Pavel Šmerk, Ph.D.
V originále
The graph cut framework presents a popular energy minimization tool. In order to be able to minimize contour length dependent energy terms an appropriate metric approximation has to be embedded into the graph such that the cost of every cut approximates the length of a corresponding contour under a given metric. Formulas giving a good approximation have been introduced by Boykov and Kolmogorov for both Euclidean and Riemannian metrics. In this paper, we improve their method and obtain a better approximation in case of the Euclidean metric. In our approach, we combine the well-known Cauchy-Crofton formulas with Voronoi diagrams theory to devise a general method with straightforward extension from 2D to 3D space. Our edge weight formulas are invariant to mirroring and directly applicable to grids with anisotropic node spacing. Finally, we show that our approach yields smaller metrication errors in both the isotropic and anisotropic case and demonstrate an application of the derived formulas to biomedical image segmentation.
In Czech
Článek se zabývá aproximací Euklidovské metriky pomocí grafových řezů.
Links
LC535, research and development project |
| ||
MSM0021622419, plan (intention) |
| ||
MUNI/A/0914/2009, interní kód MU |
| ||
2B06052, research and development project |
|