KRATZ, Werner a Roman ŠIMON HILSCHER. Rayleigh principle for linear Hamiltonian systems without controllability. ESAIM: Control, Optimisation and Calculus of Variations. Les Ulis: EDP Sciences, 2012, roč. 18, č. 2, s. 501-519. ISSN 1292-8119. doi:10.1051/cocv/2011104. |
Další formáty:
BibTeX
LaTeX
RIS
@article{924428, author = {Kratz, Werner and Šimon Hilscher, Roman}, article_location = {Les Ulis}, article_number = {2}, doi = {http://dx.doi.org/10.1051/cocv/2011104}, keywords = {Linear Hamiltonian system; Rayleigh principle; Self-adjoint eigenvalue problem; Proper focal point; Conjoined basis; Finite eigenvalue; Oscillation theorem; Controllability; Normality; Quadratic functional}, language = {eng}, issn = {1292-8119}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, title = {Rayleigh principle for linear Hamiltonian systems without controllability}, volume = {18}, year = {2012} }
TY - JOUR ID - 924428 AU - Kratz, Werner - Šimon Hilscher, Roman PY - 2012 TI - Rayleigh principle for linear Hamiltonian systems without controllability JF - ESAIM: Control, Optimisation and Calculus of Variations VL - 18 IS - 2 SP - 501-519 EP - 501-519 PB - EDP Sciences SN - 12928119 KW - Linear Hamiltonian system KW - Rayleigh principle KW - Self-adjoint eigenvalue problem KW - Proper focal point KW - Conjoined basis KW - Finite eigenvalue KW - Oscillation theorem KW - Controllability KW - Normality KW - Quadratic functional N2 - In this paper we consider linear Hamiltonian differential systems without the controllability (or normality) assumption. We prove the Rayleigh principle for these systems with Dirichlet boundary conditions, which provides a variational characterization of the finite eigenvalues of the associated self-adjoint eigenvalue problem. This result generalizes the traditional Rayleigh principle to possibly abnormal linear Hamiltonian systems. The main tools are the extended Picone formula, which is proven here for this general setting, results on piecewise constant kernels for conjoined bases of the Hamiltonian system, and the oscillation theorem relating the number of proper focal points of conjoined bases with the number of finite eigenvalues. As applications we obtain the expansion theorem in the space of admissible functions without controllability and a result on coercivity of the corresponding quadratic functional. ER -
KRATZ, Werner a Roman ŠIMON HILSCHER. Rayleigh principle for linear Hamiltonian systems without controllability. \textit{ESAIM: Control, Optimisation and Calculus of Variations}. Les Ulis: EDP Sciences, 2012, roč.~18, č.~2, s.~501-519. ISSN~1292-8119. doi:10.1051/cocv/2011104.
|