D 2011

GPU-Based Sample-Parallel Context Modeling for EBCOT in JPEG2000

MATELA, Jiří, Vít RUSŇÁK and Petr HOLUB

Basic information

Original name

GPU-Based Sample-Parallel Context Modeling for EBCOT in JPEG2000

Authors

MATELA, Jiří (203 Czech Republic, belonging to the institution), Vít RUSŇÁK (203 Czech Republic, belonging to the institution) and Petr HOLUB (203 Czech Republic, guarantor, belonging to the institution)

Edition

Dagstuhl, Germany, Sixth Doctoral Workshop on Mathematical and Engineering Methods in Computer Science -- Selected Papers, p. 77--84, 8 pp. 2011

Publisher

Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik

Other information

Language

English

Type of outcome

Stať ve sborníku

Field of Study

10201 Computer sciences, information science, bioinformatics

Country of publisher

Germany

Confidentiality degree

není předmětem státního či obchodního tajemství

Publication form

printed version "print"

References:

RIV identification code

RIV/00216224:14330/11:00049746

Organization unit

Faculty of Informatics

ISBN

978-3-939897-22-4

ISSN

Keywords in English

EBCOT;JPEG2000;Tier-1;GPU;context modeller

Tags

International impact, Reviewed
Změněno: 15/2/2013 18:28, RNDr. Jiří Matela, Ph.D.

Abstract

V originále

Embedded Block Coding with Optimal Truncation (EBCOT) is the fundamental and computationally very demanding part of the compression process of JPEG2000 image compression standard. EBCOT itself consists of two tiers. In Tier-1, image samples are compressed using context modeling and arithmetic coding. Resulting bit-stream is further formated and truncated in Tier-2. JPEG2000 has a number of applications in various fields where the processing speed and/or latency is a crucial attribute and the main limitation with state of the art implementations. In this paper we propose a new parallel approach to EBCOT context modeling that truly exploits massively parallel capabilities of modern GPUs and enables concurrent processing of individual image samples. Performance evaluation of our prototype shows speedup 12 times for the context modeller, and 1.4--5.3 times for the whole EBCOT Tier-1, which includes not yet optimized arithmetic coder.

Links

GD102/09/H042, research and development project
Name: Matematické a inženýrské metody pro vývoj spolehlivých a bezpečných paralelních a distribuovaných počítačových systémů
Investor: Czech Science Foundation
MSM0021622419, plan (intention)
Name: Vysoce paralelní a distribuované výpočetní systémy
Investor: Ministry of Education, Youth and Sports of the CR, Highly Parallel and Distributed Computing Systems
MUNI/A/0914/2009, interní kód MU
Name: Rozsáhlé výpočetní systémy: modely, aplikace a verifikace (Acronym: SV-FI MAV)
Investor: Masaryk University, Category A