Indexing and Searching Mathematics
in Digital Libraries

Architecture, Design and Scalability Issues

Petr Sojka, Martin LiSka

Masaryk University, Faculty of Informatics, Botanickd 68a, 602 00 Brno, Czech Republic
sojka@fi.muni.cz, 255768@mail .muni.cz

Abstract. This paper surveys approaches and systems for searching mathematical
formulae in mathematical corpora and on the web. The design and architecture
of our MIaS (Math Indexer and Searcher) system is presented, and our design
decisions are discussed in detail. An approach based on Presentation MathML
using a similarity of math subformulae is suggested and verified by implementing
it as a math-aware search engine based on the state-of-the-art system, Apache
Lucene.

Scalability issues were checked based on 324,000 real scientific documents from
arXiv archive with 112 million mathematical formulae. More than two billions
MathML subformulae were indexed using our Solr-compatible Lucene extension.

Keywords: math indexing and retrieval, mathematical digital libraries, infor-
mation systems, information retrieval, mathematical content search, document
ranking of mathematical papers, math text mining, MIaS, WebMIaS

I do not seek. I find.

. Pablo Picasso
1 Introduction

The solution to the problem of mathematical formulae retrieval lies at the heart of
building digital mathematical libraries (DML). There have been numerous attempts to
solve this problem, but none have found widespread adoption and satisfaction within the
wider mathematics community. And as yet, there is no widely accepted agreement on
the math search format to be used for mathematical formulae by library systems or by
Google Scholar.

MathML| standard by W3C has become the standard for mathematics exchange
between software tools. Almost no MathML is written directly by authors—they typically
prefer a compact notation of some TgX flavour such as IAIEX or AAS-IATEX. The
designer of a search system for mathematics is thus faced with the task of converting data
to a unifying format, and allowing DML users to use their prefered notation when posing
queries. [AMSIEETEX or other TeX flavour are the typical preferences; Presentation
MathML or Content MathML are used only when available as outputs of a software
system.

During the integration of existing DMLs into larger projects such as EuDML|[15],
the unsolved math search problem becomes evident—DML without math search support

J.H. Davenport et al. (Eds.): Calculemus/MKM 2011, LNAI 6824, pp. 228-243] 2011.
© Springer-Verlag Berlin Heidelberg 2011

http://www.w3.org/Math/
http://eudml.eu/

Indexing and Searching Mathematics in Digital Libraries 229

is an oxymoron. As our subject matter search has not lead to a satisfactory solution, we
have designed and implemented [[/]] new robust solutions for retrieval of mathematical
formulae.

Section [2]explores published facts about research done in the area of mathematics
retrieval. Pros and cons of existing approaches are outlined, most of them being neither
applicable nor satisfactory for digital library deployment. In Section 3| we present our
design of scalable and extensible system for searching mathematics, taking into account
not only inherent structure of mathematical formulae but also formula unification and
subformulae similarity measures. Our evaluation of prototypical implementation above
the Apache Lucene| open source full-featured search engine library is presented in
Section[d The paper closes listing future work directions in Section [5|and a conclusion
is summarised in Section

Computers are useless. They can only give you answers.
Pablo Picasso

2 Approaches to Searching Mathematics

A great deal of research on has been already undertaken on searching mathematical
formulae in digital libraries and on the web. Several such Mathematical Search Engines
(MSE) have been designed in the past: MathDex, EgoMath, IXTgXSearch, LeActiveMath
or MathWebSearch. In this section, we will briefly comment on each of these.

(formerly MathFind [9]) is a result of a NSF-funded project headed by
Robert Miner of Design Science?. It encodes mathematics as text tokens, and uses
Apache Lucene as if searching for text. Using similarity with search terms, ranked results
are produced by the search algorithm, matching n-grams of presentation MathML. The
creators of MathDex report that most of the work was due to a necessary and extensive
normalization of MathML—because of the fact that it uses several converters and
filters to convert to XHTML + MathML—HTML (jtidy), TeX/ISIEX (blahtex, ISIEXML,
Hermes), Word (Word+MathType), PDF (pdf2tiff+Infty). The algorithm of n-gram
ranking has several drawbacks. For one thing, it cannot take many kinds of elementary
mathematical equivalences into account, and it puts undue weight on variable names.

Contrary to its intentions, MathDex has not become a sustainable service to the
mathematical community, although it has fueled research in the area of mathematics
searching [164171]].

is being developed by Josef MiSutka as an extension of a full text websearch
core engine Egothor (by Leo Galambos, MFF UK Prague) [8]] licenced under GPL. It
uses presentation MathML for indexing and develops generalization algorithms and
relevancy calculation to cope with normalization. As part of EgoThor evaluation, an
MSE evaluation dataset is also being developed.*

l'www.mathdex.com/ 2 www.ima.umn.edu/2006-2007/SW 12.8-9.06/activities/Miner-Robert/index.html

3legomath.projekty.ms.mff.cuni.cz/egomath/, *egomath.cythres.cz/dataset.py

http://lucene.apache.org/java/docs/index.html
http://www.mathdex.com/
http://www.ima.umn.edu/2006-2007/SW12.8-9.06/activities/Miner-Robert/index.html
http://egomath.projekty.ms.mff.cuni.cz/egomath/
http://egomath.cythres.cz/dataset.py

230 Petr Sojka, Martin Liska

BTrpXSearch’| is a search tool offered by Springer in SpringerLink. It searches directly
in the TEX math string representations as provided by the authors of papers submitted to

Springer in IXTEX sources. Some kind of text similarity matching is probably used. Since
it is not open source, one can only guess the strategy for posing queries. Our experiments
typically lead to a very low precision. Neither is there any definition of the article dataset
available.

search has been developed as part of the |ActiveMath-EU| project. It
is Lucene based, indexing string tokens from OMDoc with an OpenMath semantic

notation. The document database format is internal since only documents authored for
LeActiveMath learning environments are indexed.

MathWebSearch’ is an MSE developed in Bremen/Saarbriicken by Kohlhase et al. [2]
It is not based on full text searching, rather it adopts a semantic approach: it uses substi-
tution trees in memory. Both presentation and content MathML is supported, together
with OpenMath. It is exceptional in the fact that it primarily deals with semantics and
uses its own engine, not being built on the Lucene engine, for math. Further development
is now being pursued under LaMaPun architecture [6].

The comparison of math search systems is summarized in Table[T] All of the MSEs
reviewed had some drawbacks regarding their employment in a digital mathematical
library such as EuDML. This was our main motivation for designing a new one, primarily
for the use in large scale libraries, such as EuDML or ArXiv.

Everything you can imagine is real.
3 Design of MIaS Pablo Picasso

We have developed a math-aware, full-text based search engine called MIlaS (Math
Indexer and Searcher). It processes documents containing mathematical notation in
MathML format. MIaS allows users to search for mathematical formulae as well as the
textual content of documents.

Since mathematical expressions are highly structured and have no canonical form,
our system pre-processes formulae in several steps to facilitate a greater possibility of
matching two equal expressions with different notation and/or non-equal, but similar
formulae. With an analogy to natural language searching, MIaS searches not only for
whole sentences (whole formulae), but also for single words and phrases (subformulae
down to single variables, symbols, constants, etc.). For calculating the relevance of the
matched expressions to the user’s query, MIaS uses a heuristic weighting of indexed
terms, which accordingly affects scores of matched documents and thus the order of
results.

3.1 System Workflow

The top-level indexing scheme is shown in Figure A detailed view of the
mathematical part is shown in Figure[2 on page 233]

7

Slwww.latexsearch.com/ ®/devdemo.activemath.org/ActiveMath2/ search.mathweb.org/index.xhtml

http://www.activemath.org/eu/
search.mathweb.org/index.xhtml
http://www.latexsearch.com/
http://devdemo.activemath.org/ActiveMath2/
http://search.mathweb.org/index.xhtml

231

Indexing and Searching Mathematics in Digital Libraries

uoneZI[ewIou (sSuwns pajoed
JjoSg/ouaon| poxIwu /Kyreqrwurs -wod Sk) s9a1) TINYIBIN
syoedy| ‘yrews 9x9) TNWEIN 1o XAGT-sWig| A 9913 Ypew uoneIuISAIJ [edruoue)| TINYIRIA (pouLIoj-[jom) Aue SeIA
paxIw (s3uLns se) Add “TINYIBIA Ju91uo)
Ioyo3q| ‘yreuwr 1xo) Hi1| paxIu| 391 TINYIBIN UOTIRIUSSAI] “TINUIRIA Uonejuasald yIeNOSq
(T031po
(Auo 1x9) onored) so[h1s seoex ‘orden
J10J) Quadong paxIuu ‘RUWIXBIA ‘BONBWAYIBIA (seam uonymnsqns) Ye| PewuedQ “TINYIBRIA U}
ouoedy| ‘yrew 1x9) AT “WeND| A onuewds| -uadQ “TINYIBIA JUAIUOD) |FU0D) “TINYIBIA UONRIUISAI |YoIeaS qIMUIBIA
10d
(| ‘ypewr ‘sapm A % onoejuks (Suins se) HIG1 Ara yoreaSsHIf
QuadNng paxIw
ouoedy| ‘yrew 9x91| (1031po apored) yreNuadO| X onoejuks (3uLns se) yepuedo yleNuadQ O0QINO| WBINRANOYI
Quaon| paxIwt (s3uns Adad
syoedy| ‘yrewr 9x9) AR onoejuks| se) TINYIBIN uoneiuasald| ‘pIoan “XHIgl/XHL “TINLH Xo(qUIeIN
9100 ‘ba
Surxopuy sarrang) ogen3ue| A1on)| -» yoeoiddy uonejuasardar feurduy sjuaunoop ndug WAISAS

SUIRISAS [oIeas yyew jo uosiredwo)) 1 9[qel,

232 Petr Sojka, Martin Liska

inpl.lt document indexing
canonized handler

[
[
[
[
| document
[
[
[
[

unification

anonization

math processing

\
\
\
\
\
\
\
\
\
\

. i
o Lucene Core indexer kenization }
|| [\
T L N A -7
\ \
\ \
\ \
\ \
\ \
\ \
| \

searching |

Fig. 1: Scheme of the system workflow

3.2 Indexing

MIaS is currently able to index documents in XHTML, HTML and TXT formats. As
Figure[I] shows, the input document is first split into textual and mathematical parts. The
textual content is indexed in a conventional way.

Mathematical expressions, on the other hand, are pre-analyzed in several steps to
facilitate searches not only for exact whole formulae, but also for subparts (tokenization)
and for similar expressions (formulae modifications). This addresses the issue of the
static character of full-text search engines and creates several representations of each
input formula all of which are indexed. Each indexed mathematical expression has a
weight (relevancy score) assigned to it. It is computed throughout the whole indexing
phase by individual processing steps following this basic rule of thumb—the more
modified a formula and the lower the level of a subformula, the less weight is assigned
to it.

At the end of all processing methods, formulae are converted from XML nodes to a
compacted linear string form, which can be handled by the indexing core. Start and end
XML tags are substituted by the tag name followed by an argument embraced by opening
and closing parentheses. This creates abbreviated but still unambiguous representation
of each XML node. For example, formula a + b?, in MathML written as:

Indexing and Searching Mathematics in Digital Libraries 233

input document
canonized handler

| |

| |

| |

| |

! document o |

| . %, |

% & . .

! / 4 ! indexing
| |

okenization

nification
anonization
math processing

math processing

Yoo

ordering canonization

input query

weighting
A

\
\
N |
\ g : iconstatns unification
\ 1

i
\ \/ j ;
/
4/:arching

Fig. 2: Scheme of the MIaS workflow of math processing

<math xmlns="http://www.w3.org/1998/Math/MathML">
<mrow>
<mi>a</mi>
<mo>+</mo>
<msup> <mi>b</mi><mn>2</mn></msup>
</mrow>
</math>

is converted to “math(mrow(mi (a)mo (+)msup (mi (b)mn(2))))” and this string is
then indexed by Lucene.

3.3 Tokenization

Tokenization is a straightforward process of obtaining subformulae from an input formula.
MIaS makes use of Presentation MathML markup where all logical units are enclosed
in XML tags which makes obtaining all subformulae a question of tree traversal. The
inner representation of each formula is an XML node encapsulating all the member
child nodes. This means the highest level formula—as it appears in the input document—
is represented by a node named “math”. All logical subparts of an input formula are
obtained and passed on to modification algorithms.

234 Petr Sojka, Martin Liska

3.4 Formulae Modifications

MlaS performs three types of unification algorithms, the goal of which is to create
several more or less generalized representations of all formulae obtained through the
tokenization process. These steps allow the system to return similar matches to the user
query while preserving the formula structure and a-equality.

3.5 Ordering

Let us take a simple example: a+3 and the query 3+a. This would not match even though
it is perfectly equal. This is why a simple ordering of the operands of the commutative
operations, addition and multiplication, is used. It tries to order arguments of these
operations in the alphabetical order of the XML nodes denoting the operands whenever
possible—it considers the priority of other relevant operators in the formula. The system
applies this function to the formula being indexed as well as to the query expression.
Applied to the example above, the XML node denoting variable a is named “mi”, the
node denoting number 3 is named “mn”. “mi”<*“mn” therefore 3 +a would be exchanged
for a + 3 and would match.

3.6 Unification of Variables

Let us take another example: a+b“ and x+y*. Again, these would not match even though
the difference is only in the variables used. MIaS employs a process that unifies variables
in expressions while taking bound variables into account. All variables are substituted for
unified symbols (ids) in both the indexing and searching phases. Applied to the example,
both expressions would unify to id; + id'2dl and would match. This process is not applied
to single symbols—this would lead to the indexing of millions of ids and searching for
any symbol would end up matching all of the documents containing it.

3.7 Unification of Constants

This is a strightforward process of substituting all the numerical constants for one unified
symbol (const). This obviates the need for the exact values of constants in user queries.
In some situations however, this can be too much of a generalization. As well as in
the case of the variables, stand-alone numerical constants are not unified for the same
obvious reason.

3.8 Formulae Weighting

During the searching phase, a query can match several terms in the index. However one
match can be more important to the query than another, and the system must consider
this information when scoring matched documents. For mathematical formulae the
system makes use of the processing operations described above since they all produce
expressions more generalized than the input ones.

It is impossible to assemble a weighting function that is exactly right. Such a function
should consider a document base on which the system will run as well as the established

Indexing and Searching Mathematics in Digital Libraries 235

customs in a particular scientific field. We tried to create a complex and robust weighting
function that would be appropriate to many fields.

The original unchanged untokenized formula should of course have the greatest
weight, but the precision of the ordered representation is not compromised at all, so it
should have the same weight. In fact, if the ordering process changes the order of some
members in an expression, the original formula is not indexed at all. The starting weight
for such a representation is 1.

The tokenization process should naturally lower the weight of the subformulae since
they are deeper in the structure and therefore less important to the overall formula. When
a user who is searching for a + b finds two documents, the first containing a + b and the
second containing ﬁ, the first should score more and appear higher in the results, as
it matches in higher level of MathML expression tree. Hence the tokenization process
reduces the weight of the subformulae according to the level coefficient [< 1.

Both unification algorithms produce representations that are more generalized than
their input expressions. They have a higher probability of matching, and should there-
fore score less. The unification of variables alters the weight of the result formula by
coeflicient v < 1, unification of number constants uses coeflicient ¢ < 1.

Theoretically, two equally unified subformulae matched on the same level of differ-
ently complex parent formulae would have the same score. For example

a+ b3+a

and

[256% db
0

d—e
100ab
3ta T p O

with the query 3 + a. Both matches are not unified, and both are found on the third level.
Analogously to conventional full-text engines which discriminate documents with more
tokens than others, we use information about the complexity of parent formulae. More
specifically, an initial weight of 1 is multiplied by the inverse number of nodes of a
whole parent expression.

According to this model, each formula has a weight attribute indexed alongside itself,
which belongs to the interval (0, 1). Weight w of the subformula contained on a certain
level in a parent formula with the number of nodes () can be calculated in particular
situations as follows:

1Vl (1 4y+c+ve)

no changes made: w =

unified variables: w =

Vel (y4vc)
n

Il (ctve)
n

unified both variables and constants: w =

unified constants: w =

llevcl (ve)
n

See Section [3.9] for details.
To fine tune the weighting parameters, we developed a tool with verbose output in
which the behavior of the model can be observed and tested. A sample from the tool

mentioned above is shown in Table

236 Petr Sojka, Martin Liska

input: (a+b*"®, 0.125)
(“mi" < “mn” = 2<->c)
arranged: (a+b°*?,0.125)

tokenization: (a,0.0875) (+,0.0875) (buz ,0.0875)

(b,006125)," ! (c+2,0.06125)

/

(c,0042875) / % . (2 0042875)

(+,0.042875)
unifeation: S S L
(id,+id¥*2,0.1) S (ide20.07) (id,+2,0.0343)
constants | / ! ! : \
unification: ¥ ; 4 : '*)
(a+b°*™™ 0.0625) '/ (b | 0.04375) ! (c+const, 0.030625) ,
v \
(id, +id3""*", 0.05) (idid =% 0,035) (id,+ const, 0.01715)

Fig. 3: Example of formula preprocessing. Ordered pairs are (<expression written nat-
urally>, <it’s weight>). All expressions as shown are indexed, except for the original
one.

We have come to the conclusion that the unification of variables interferes less with
original formula meaning than the unification of number constants. For this reason, its
coeflicient should be higher—i.e., less discriminating. The main question then became,
how discriminating the level coefficient should be. Our empirical deduction is that going
deeper in a structural tree should be discriminating, the precise match on a lower level
should still score more than any unified formula on the level above, as could be seen in
Table ﬁ (row 5) is an exact match on the second level and its score is higher than
unified expressions matched on the first level (rows 2, 3 and 4).

This led us to the valuation of level weighting coefficient / = 0.7, unification
weighting coefficient v = 0.8 and constant weighting coefficient ¢ = 0.5.

In Figure 3|the whole formula preprocessing process is illustrated together with its
subformulae weightings.

3.9 Searching

In the search phase, user input is again split into mathematical and textual parts. Formulae
are then reprocessed in the same way as in the indexing phase, except for tokenization—
which we doubt that users are likely to query, for example # wanting to find documents
only with occurrences of variable c. That means the queried expressions are first ordered,
then unified. This produces several representations which are connected to the final query
by the logical OR operator.

Textual query terms are connected to the final query by the logical AND operator.

Therefore by specifying a text term we can narrow down the results, because each

Indexing and Searching Mathematics in Digital Libraries 237

Table 2: Example of weighting function on several formulae. Original query is a+3—all
queried expressions are a + 3, id; + 3, a + const, id; + const.

[Formula [Indexed Expressions

[Score[Matched

a+3

0.25=[a + 3], 0.2=[id; + 3], 0.175=[a, 3, +],
0.125=[a + const], 0.1=[id; + const]

2.7

0.1[id; + const] + 0.25[a + 3] +
0.2[id; + 3] + 0.125[a + const]

b+3

0.25=[b + 3], 0.2=[id, + 3], 0.175=[b, +, 3],
0.125=[b + const], 0.1=[id; + const]

1.2

0.1[id; + const] + 0.2[id; + 3]

a+5

0.25=[a + 5], 0.2=[id; + 5], 0.175=[a, +, 5],
0.125=[a + const], 0.1=[id; + const]

0.9

0.1[id; + const] + 0.125[a + const]

0.25=[c + 10], 0.2=[id; + 10],

0.1=[id; + const]

¢+ 10 [0.175=[c, +, 10], 0.125=[c + const],

04

0.1[id; + const]

0.16667=[51, 0.13334=[7 51,

a+3 a+const

id| +const

0.04667=[id; + const]

0.11667=[1,a + 3], 0.09334=[id, + 3],
L 10.08334=[-] 0.08167=[+, 3, al,
0.06667=[=L 0.05833=[a + const],

1.26

0.04667[id; + const] + 0.11667[a +
3] + 0.09334[id, + 3] + 0.05833[a +
const]

0.16667=[51, 0.13334=[751,

b+const

id| +const

0.04667=[id; + const]

0.11667=[b + 3,1], 0.09334=[id, + 3],
A 10.08334=[;2L 1, 0.08167=[b, 3, +],
0.06667=[=<%L_] 0.05833=[b + const],

0.56

0.04667[id; +const] + 0.09334[id, +
3]

0.16667=[51, 0.13334=[751,

idy+5

id| +const

0.04667=[id; + const]

0.11667=[1,a + 51, 0.09334=[id, + 51,
L 10.08334=[2L], 0.08167=[a, 5, +],
0.06667=[71, 0.05833=[a + const],

0.42

0.04667[id; + const] + 0.05833[a +
const]

0.16667=[11, 0-13334:[id11+10]’

o
+
S

c+const

id| +const

0.04667=[id; + const]

0.11667=[1, ¢ + 10], 0.09334=[id; + 10],
! 0.08334=[-2L10.08167=[+, c, 10],
0.06667=[=21 0.05833=[c + const],

0.19

0.04667[id; + const]

returned document must have the term contained. When more than one text term is
specified, they are implicitly connected to the text query by the OR operator which means
at least one term should occur in the result. We can also explicitly state preferences about
each text term—whether it needs to occur in the result or not.

As stated above, the final query, without having explicitly stated occurrences of text
terms, is in the logical form of (formula,; V...V formula,) A (term; V...V term,).

In order to counterbalance the weight of the textual and mathematical parts of the
query, the score of the matched formulae are additionally multiplied by number of nodes
the matching query consists of. This results in more complex mathematical queries

scoring more.

238 Petr Sojka, Martin Liska

A very positive value has its price in negative terms. .. the genius of Einstein leads to Hiroshima.
Pablo Picasso

4 Evaluation

For large scale evaluation, we needed an experimental implementation and a corpus of
mathematical texts.

4.1 Implementation

The Math Indexer and Searcher is written in Java. The role of full-text indexing and
searching core is performed by Apache Lucene 3.1.0. The mathematical part of document
processing can be seen as a standalone pluggable extension to any full-text library,
however it would need custom integration for each one. In the case of Lucene, a custom
Tokenizer (MathTokenizer) has been implemented.

For the textual content of documents, Lucene’s Standard Analyzer is employed. In
MathTokenizer, TermAttributes are used for carrying strings of math expressions and
PayloadAttribute for storing weights of formulae.

The question now is, how should the weights of formulae be taken into consideration
in the overall score of matched documents. Lucene’s practical scoring function for every
hit document d by query g with each query term ¢ is as follows:

score(q,d) = coord(q, d)-queryNorm(q)-Z (tf(t ind) - idf(z‘)2 - t.getBoost() - norm(t, d))

ting

It is described in detail at http://lucene.apache.org/java/3_1_0/api/core/
index.html?org/apache/lucene/search/Similarity.html.

When searching for mathematical formulae, their weights need to be considered
in the final score of the document. The resulting MIaS scoring function adds another
parameter to the basic function—weight w of one matched formula:

score(q,d) = coord(q, d) - queryNorm(q) -
: Z (¢f(tind) - avg(w) - idf (1)" - t.getBoost() - norm(t,d)) (1)

ting

If a document contains the same formula more than once (each occurrence can have
different weight assigned), the average value of all the weights is taken into consideration
(avg(w)).

Let’s take a simplified version of the function (T)). Specifically, let us not to consider
normalization factor queryNorm(q), inverse document frequency idf(t)*> and document/
field boost and length factor norm(t, d):

score(q,d) = coord(q,d) - Z (#f(tind) - avg(w) - t.getBoost()) 2)

ting

and follow the example in Table [2 on the previous page| Let’s consider we query a
document containing only two formulae b + 3 and # (rows 2 and 5). During indexing

http://lucene.apache.org/java/docs/index.html
http://lucene.apache.org/java/3_1_0/api/core/index.html?org/apache/lucene/search/Similarity.html
http://lucene.apache.org/java/3_1_0/api/core/index.html?org/apache/lucene/search/Similarity.html

Indexing and Searching Mathematics in Digital Libraries 239

time, preprocessing creates several more representations, all of which are indexed (shown
in the second column). The query is a + 3 which is expanded by query preprocessing to
the final query that takes the form of @ + 3 V id; + 3 V a + const V id; + const. Column 4
shows which actual expressions will match the query for each particular input formula.
coord(q, d) will be % because all four of the four query terms found a match. Query terms
a+ 3 matched only one indexed term and its weight is 0.11667; query term a + const also
matched only one indexed term and its weight 0.05833; query term id; + 3 matched two
indexed terms with weights 0.2 and 0.09334 so its average is 0.14667; finally the last
query term id; + const matched two indexed expressions with weights 0.1 and 0.04667
so its average is 0.07335. r.getBoost() is a query time boosting factor and as stated in
Section[3.9] we use the number of XML nodes of the original query formula—in this
example it is 4. The resulting score of the whole document is then

1 ((1 -0.11667 - 4) + (1 -0.05833 - 4) + (2% -0.14667 - 4) + (2% -0.07335 - 4))

4.2 Corpus of Mathematical Documents MREC

A document corpus MREC with 324,060 scientific documents (version 2011.3.324) was
initially used to evaluate the behaviour of the system we modelled. The documents come
from the arXMLiv project that is converting document sets from arXiv into XHTML +
MathML (both Content and Presentation) [[13]]. At the time of testing, our system was
not yet able to process mixed MathML markup so preprocessing in the sense of filtering
out unwanted markup was needed. The resulting corpus size was 53 GB uncompressed,
6.7 GB compressed. Documents contained 112,055,559 formulae in total, of which
2,129,261,646 mathematical expressions were indexed. The resulting index size was
approx. 45 GB.

We were able to gather even greater amount of documents in MREC corpus version
2011.4.439 to test our indexing system. This corpus consists of 439,423 arXMLiv
documents containing 158,106,118 mathematical formulae. 2,910,314,146 expressions
were indexed and the resulting size of the index is 63 GB. Sizes of uncompressed and
compressed corpora size are 124 GB and 15 GB, respectively.

Mentioned MREC corpora are available to the community for download from MREC
web page http://nlp.fi.muni.cz/projekty/eudml/MREC/ so that other math in-
dexing engines could be compared with MIaS on the same data.

4.3 Results

Math Indexer and Searcher demonstrated the ability to index and search a relatively
vast corpus of real scientific documents. Its usability is highly elevated thanks to its
preprocessing functions together with formulae weighting model. The ability to search
for exact and similar formulae and subformulae, more so with customizable relevancy
computation, demonstrates an unquestionable contribution to the whole search experi-
ence.

It is very difficult, if not impossible, to completely verify the correctness of the
theoretical considerations made in the previous sections and thus correctness of search

http://kwarc.info/projects/arXMLiv/
http://nlp.fi.muni.cz/projekty/eudml/MREC/

240 Petr Sojka, Martin Liska

Table 3: Scalability test results (run on 32 GB RAM, quad core AMD Opteron™
Processor 850 driven machine).
[Documents [Input formulae [Indexed formulae | Indexing time [min] | Average query time [ms]|

10,000 3,450,114 65,194,737 39.15 32
50,000 17,734,342 334,078,835 201.68 178
200,000 70,102,960 | 1,316,603,055 889.28 576
324,060 112,055,559 | 2,129,261,646 1,292.16 789

results. For this purpose, a sufficiently large corpus of documents with fully controlled
content would be needed. For any assembled query, there should exist beforehand a
complete list of the documents ordered by their relevance to the query to compare the
actual results to.

We have applied an empirical approach to the evaluation so far. For these purposes
we have created a demo web interface WebMIaS which is publicly available on the
MlaS web page http://nlp.fi.muni.cz/projekty/eudml/mias/. It works over
MREC corpora discussed in the Section[4.2] Additionally, for the latest MREC corpus
we have implemented and added demanded snippet generation and mathematical match
highlighting in hit list. Preliminary version of this functionality is available.

Our WebMIaS interface supports queries in two different notations—in AAS-IATEX
and MathML. Mathematical queries are additionally canonized using XSLT transfor-
mations from UMCL library [4/3] to improve the query and to avoid notation flaws
restraining proper results retrieval. Portability of the interface is increased by using
MathJax for rendering of mathematical formulae in snippets.

4.4 Scalability Testing and Efficiency

We have devised a scalability test to see how the system behaves with an increasing
number of documents and formulae indexed. Subsets containing 10,000, 50,000, 200,000
and the complete 324,060 documents were gradually indexed and several values were
measured: the number of input formulae, the number of indexed formulae, the indexing
time and the average query time.

The number of input formulae indicate how rich a particular subset was in formulae;
the number of indexed formulae should illustrate their complexity. Moreover both should
indicate whether indexing and query time are dependent on the number of documents
or specially on the formulae they contain. For measuring the average query time, we
queried each created index with the same set of differently complex queries (mixed,
non-mixed, more/less complex single/multiple formulae) computing the average time.
The results are shown in Table [3|and in the form of diagrams in Figure
[P3gS

MREC version 2011.4.439 was indexed using improved and optimised algorithms
and ran on a different machine. Therefore it cannot be compared to measured values
shown in tables [3]and 4 on the next page] Indexing time of this corpus was 1378.82 min,
e.g. almost 23 hours.

http://nlp.fi.muni.cz/projekty/eudml/mias/
http://mathjax.org

Indexing and Searching Mathematics in Digital Libraries 241

8000

7000

90000
6000
80000

70000 5000

60000 4000
50000

Query time [ms]

3000
40000

Indexing time s]

30000 2000

20000

1000
10000

0 0
0 20000 40000 60000 80000 100000 120000 0 20000 40000 60000 80000 100000 120000
Input formulae K] Inputformulae [K]

(a) Number of input formulae vs. indexing (b) Number of input formulae vs. query time
time
2500000
2000000
20 1500000
m
_ 0 = Indexed formulae [K]
Z w0 1000000 = Input formulae [K]
T
S oo
5 w0 500000
o0
0 0
10000 50000 200000 324060 0 50000 100000 150000 200000 250000 300000 350000
Document its Documents
(c) Number of documents vs. query time (d) Number of formulae vs. number of docu-
ments

Fig. 4: Scalability diagrams

He can who thinks he can, and he can’t who thinks he can’t.
This is an inexorable, indisputable law.
Pablo Picasso

5 Open Issues, Future Work

We are now awaiting heterogeneous MathML data collected by the EuDML project, that
has been generated from born-digital [meta]data [[10], from born-digital PDFs [5] or
from math OCR [14].

It is evident that some kind of normalization of MathML will be a necessity. We
have opted for Canonical MathML [4)3]] as normalization MathML format and are using
software library UMCL]| supporting it. Our latest experiments with canonical form of
MathML generated by UMCL shows that it not only increases fairness of similarity
ranking, but also helps to match a query against the indexed form of MathML. We are
also working hard on snippets generation and on matched formulae visualization.

Another area of long-term research planned is supporting Content MathML, in a
way similar to the current handling of Presentation MathML. The architectural design is
open to it, but as most of math within EuDML will be in Presentation MathML taken
from PDFs, this is not currently a high priority.

http://sourceforge.net/projects/umcl/

242 Petr Sojka, Martin Liska

I am always doing that which I can not do, in order that I may learn how to do it.

i Pablo Pi
6 Conclusions ablo Picasso

We have presented an approach to mathematics searching and indexing—the architecture
and design of the MIaS system. The feasibility of our approach has been verified on large
corpora of real mathematical papers from arXMLiv. Scalability tests have confirmed that
the computing power needed for fine math similarity computations is readily available;
this would allow the use of this technology for projects on a European or world-wide
scale.

Acknowledgements. This work has been in part financed by the European Union
through its Competitiveness and Innovation Programme (Information and Communica-
tions Technologies Policy Support Programme, “Open access to scientific information”,
Grant Agreement no. 250,503). We thank anonymous reviewers for their improvement

and future work suggestions, Michal RiZic¢ka for help with figure drawings and web
form of MIaS interface, and Peter Mravec for collecting MREC.

References

1. Altamimi, M., Youssef, A.S.: A Math Query Language with an Expanded Set of Wildcards.
Mathematics in Computer Science 2, 305-331 (2008), http://dx.doi.org/10.1007/
s11786-008-0056-4

2. Anca, S.: Natural Language and Mathematics Processing for Applicable Theorem
Search. Master’s thesis, Jacobs University, Bremen (Aug 2009), https://svn.eecs.
jacobs-university.de/svn/eecs/archive/msc-2009/aanca.pdf

3. Archambault, D., Berger, F., Mogo, V.: Overview of the “Universal Maths Conversion Library”.
In: Pruski, A., Knops, H. (eds.) Assistive Technology: From Virtuality to Reality: Proceedings
of 8th European Conference for the Advancement of Assistive Technology in Europe AAATE
2005, Lille, France. pp. 256-260. 10S Press, Amsterdam, The Netherlands (Sep 2005)

4. Archambault, D., Moco, V.: Canonical MathML to Simplify Conversion of MathML to Braille
Mathematical Notations. In: Miesenberger, K., Klaus, J., Zagler, W., Karshmer, A. (eds.)
Computers Helping People with Special Needs, Lecture Notes in Computer Science, vol.
4061, pp. 1191-1198. Springer Berlin / Heidelberg (2006), http://dx.doi.org/10.1007/
11788713_172

5. Baker, J.B., Sexton, A.P., Sorge, V.: Extracting Precise Data on the Mathematical Content
of PDF Documents. In: Sojka [11], pp. 75-79, http://dml.cz/handle/10338.dmlcz/
702535

6. Grigore, M., Wolska, M., Kohlhase, M.: Towards context-based disambiguation of mathemat-
ical expressions. Math-for-Industry Lecture Note Series 22, 262-271 (Dec 2009)

7. Liska, M.: Vyhledavani v matematickém textu (in Slovak), Searching Mathematical Texts
(2010), Bachelor Thesis, Masaryk University, Brno, Faculty of Informatics (advisor: Petr
Sojka), https://is.muni.cz/th/255768/fi_b/?lang=en

8. MiSutka, J., Galambos, L.: Extending Full Text Search Engine for Mathematical Content. In:
Sojka [[L1], pp. 55-67,http://dml.cz/dmlcz/702546

9. Munavalli, R., Miner, R.: MathFind: A Math-Aware Search Engine. In: Proceedings of
the 29th annual international ACM SIGIR conference on Research and development in
information retrieval. pp. 735-735. SIGIR 06, ACM, New York, NY, USA (2006), http:
//doi.acm.org/10.1145/1148170.1148348

http://dx.doi.org/10.1007/s11786-008-0056-4
http://dx.doi.org/10.1007/s11786-008-0056-4
https://svn.eecs.jacobs-university.de/svn/eecs/archive/msc-2009/aanca.pdf
https://svn.eecs.jacobs-university.de/svn/eecs/archive/msc-2009/aanca.pdf
http://dx.doi.org/10.1007/11788713_172
http://dx.doi.org/10.1007/11788713_172
http://dml.cz/handle/10338.dmlcz/702535
http://dml.cz/handle/10338.dmlcz/702535
https://is.muni.cz/th/255768/fi_b/?lang=en
http://dml.cz/dmlcz/702546
http://doi.acm.org/10.1145/1148170.1148348
http://doi.acm.org/10.1145/1148170.1148348

10.

11.

12.

13.

14.

15.

16.

Indexing and Searching Mathematics in Digital Libraries 243

Ruzicka, M., Sojka, P.: Data Enhancements in a Digital Mathematics Library. In: Sojka [12],
pp- 69-76, http://dml.cz/dmlcz/702575

Sojka, P. (ed.): Towards a Digital Mathematics Library. Masaryk University, Birmingham,
UK (Jul 2008), http://www.fi.muni.cz/~sojka/dml-2008-program.xhtml

Sojka, P. (ed.): Towards a Digital Mathematics Library. Masaryk University, Paris, France
(Jul 2010), http://www. fi.muni.cz/~sojka/dml-2010-program.html
Stamerjohanns, H., Kohlhase, M., Ginev, D., David, C., Miller, B.: Transforming Large
Collections of Scientific Publications to XML. Mathematics in Computer Science 3, 299-307
(2010), http://dx.doi.org/10.1007/s11786-010-0024-7

Suzuki, M., Tamari, F., Fukuda, R., Uchida, S., Kanahori, T.: INFTY — An integrated OCR
system for mathematical documents. In: Vanoirbeek, C., Roisin, C., Munson, E. (eds.) Pro-
ceedings of ACM Symposium on Document Engineering 2003. pp. 95-104. ACM, Grenoble,
France (2003)

Sylwestrzak, W., Borbinha, J., Bouche, T., Nowiriski, A., Sojka, P.. EuDML—Towards the
European Digital Mathematics Library. In: Sojka [12]], pp. 11-24, http://dml.cz/dmlcz/
702569

Youssef, A.S.: Roles of Math Search in Mathematics. In: Borwein, J., Farmer, W. (eds.) The
5th International Conference on Mathematical Knowledge Management. Lecture Notes in
Computer Science, vol. 4108, pp. 2-16. Springer-Verlag (Aug 2006), http://dx.doi.org/
10.1007/11812289_2

. Youssef, A.S.: Methods of Relevance Ranking and Hit-Content Generation in Math Search. In:

Kauers, M., Kerber, M., Miner, R., Windsteiger, W. (eds.) Towards Mechanized Mathematical
Assistants. Proceedings of 6th International Conference, MKM 2007. Lecture Notes in
Computer Science, vol. 4573, pp. 393—406. Springer-Verlag, Berlin, Germany (Jun 2007)

http://dml.cz/dmlcz/702575
http://www.fi.muni.cz/~sojka/dml-2008-program.xhtml
http://www.fi.muni.cz/~sojka/dml-2010-program.html
http://dx.doi.org/10.1007/s11786-010-0024-7
http://dml.cz/dmlcz/702569
http://dml.cz/dmlcz/702569
http://dx.doi.org/10.1007/11812289_2
http://dx.doi.org/10.1007/11812289_2

	

