JANYŠKA, Josef a Martin MARKL. Combinatorial differential geometry and ideal Bianchi–Ricci identities II - the torsion case. Archivum Mathematicum. Brno: Masaryk University, 2012, roč. 48, č. 1, s. 61-80. ISSN 0044-8753. doi:10.5817/AM2012-1-61.
Další formáty:   BibTeX LaTeX RIS
Základní údaje
Originální název Combinatorial differential geometry and ideal Bianchi–Ricci identities II - the torsion case
Název česky Kombinatorická difenenciální geometrie a ideální Bianchi-Ricciho identity II - the torsion case
Autoři JANYŠKA, Josef (203 Česká republika, garant, domácí) a Martin MARKL (203 Česká republika).
Vydání Archivum Mathematicum, Brno, Masaryk University, 2012, 0044-8753.
Další údaje
Originální jazyk angličtina
Typ výsledku Článek v odborném periodiku
Obor 10101 Pure mathematics
Stát vydavatele Česká republika
Utajení není předmětem státního či obchodního tajemství
WWW URL
Kód RIV RIV/00216224:14310/12:00057361
Organizační jednotka Přírodovědecká fakulta
Doi http://dx.doi.org/10.5817/AM2012-1-61
Klíčová slova česky Přirozené operátory; lineární konexe; torze; redukční věta; graf
Klíčová slova anglicky Natural operator; linear connection; torsion; reduction theorem; graph
Štítky AKR, rivok
Příznaky Mezinárodní význam, Recenzováno
Změnil Změnil: prof. RNDr. Josef Janyška, DSc., učo 1384. Změněno: 24. 4. 2012 08:53.
Anotace
This paper is a continuation of the paper J. Janyška and M. Markl, Combinatorial differential geometry and ideal Bianchi-Ricci identities, Advances in Geometry 11 (2011) 509-540, dealing with a general, not-necessarily torsion-free, connection. It characterizes all possible systems of generators for vector-field valued operators that depend naturally on a set of vector fields and a linear connection, describes the size of the space of such operators and proves the existence of an `ideal' basis consisting of operators with given leading terms which satisfy the (generalized) Bianchi--Ricci identities without corrections.
Anotace česky
Tento článek je poklračováním článku J. Janyška and M. Markl, Combinatorial differential geometry and ideal Bianchi-Ricci identities, Advances in Geometry 11 (2011) 509-540, a pojednává o obecné lineární konexi s torzí. Jsou charakterizovány všechny možné systémy generátorů takových operátorů. Je dána dimenze prostoru operátorů a je dokázána existence ideální báze operátorů, která splňuje Bianchiho-Ricciho identity s nulovou pravou stranou. Důkazy jsou provedeny kombinací klasických metod a metod grafových komplexů.
Návaznosti
GA201/09/0981, projekt VaVNázev: Globální analýza a geometrie fibrovaných prostorů
Investor: Grantová agentura ČR, Standardní projekty
MSM0021622409, záměrNázev: Matematické struktury a jejich fyzikální aplikace
Investor: Ministerstvo školství, mládeže a tělovýchovy ČR, Výzkumné záměry
Typ Název Vložil/a Vloženo Práva
AM_2012_42_JanMar.pdf   Verze souboru Janyška, J. 24. 4. 2012

Vlastnosti

Adresa v ISu
https://is.muni.cz/auth/publication/980449/AM_2012_42_JanMar.pdf
Adresa ze světa
https://is.muni.cz/publication/980449/AM_2012_42_JanMar.pdf
Adresa do Správce
https://is.muni.cz/auth/publication/980449/AM_2012_42_JanMar.pdf?info
Ze světa do Správce
https://is.muni.cz/publication/980449/AM_2012_42_JanMar.pdf?info
Vloženo
Út 24. 4. 2012 08:53, prof. RNDr. Josef Janyška, DSc.

Práva

Právo číst
  • kdokoliv v Internetu
Právo vkládat
 
Právo spravovat
  • osoba prof. RNDr. Josef Janyška, DSc., učo 1384
Atributy
 

AM_2012_42_JanMar.pdf

Aplikace
Otevřít soubor.
Stáhnout soubor.
Adresa v ISu
https://is.muni.cz/auth/publication/980449/AM_2012_42_JanMar.pdf
Adresa ze světa
http://is.muni.cz/publication/980449/AM_2012_42_JanMar.pdf
Typ souboru
PDF (application/pdf)
Velikost
501,5 KB
Hash md5
85ee8a5de5406039f531afbd5f1433b9
Vloženo
Út 24. 4. 2012 08:53

AM_2012_42_JanMar.txt

Aplikace
Otevřít soubor.
Stáhnout soubor.
Adresa v ISu
https://is.muni.cz/auth/publication/980449/AM_2012_42_JanMar.txt
Adresa ze světa
http://is.muni.cz/publication/980449/AM_2012_42_JanMar.txt
Typ souboru
holý text (text/plain)
Velikost
40,7 KB
Hash md5
6a970b3124b866ee6e570c6a7a5cfde5
Vloženo
Út 24. 4. 2012 09:21
Vytisknout
Nahlásit neoprávněně vložený soubor Zobrazeno: 20. 1. 2022 13:08