Další formáty:
BibTeX
LaTeX
RIS
@article{980449, author = {Janyška, Josef and Markl, Martin}, article_location = {Brno}, article_number = {1}, doi = {http://dx.doi.org/10.5817/AM2012-1-61}, keywords = {Natural operator; linear connection; torsion; reduction theorem; graph}, language = {eng}, issn = {0044-8753}, journal = {Archivum Mathematicum}, title = {Combinatorial differential geometry and ideal Bianchi–Ricci identities II - the torsion case}, url = {http://emis.muni.cz/journals/AM/12-1/am2052.pdf}, volume = {48}, year = {2012} }
TY - JOUR ID - 980449 AU - Janyška, Josef - Markl, Martin PY - 2012 TI - Combinatorial differential geometry and ideal Bianchi–Ricci identities II - the torsion case JF - Archivum Mathematicum VL - 48 IS - 1 SP - 61-80 EP - 61-80 PB - Masaryk University SN - 00448753 KW - Natural operator KW - linear connection KW - torsion KW - reduction theorem KW - graph UR - http://emis.muni.cz/journals/AM/12-1/am2052.pdf L2 - http://emis.muni.cz/journals/AM/12-1/am2052.pdf N2 - This paper is a continuation of the paper J. Janyška and M. Markl, Combinatorial differential geometry and ideal Bianchi-Ricci identities, Advances in Geometry 11 (2011) 509-540, dealing with a general, not-necessarily torsion-free, connection. It characterizes all possible systems of generators for vector-field valued operators that depend naturally on a set of vector fields and a linear connection, describes the size of the space of such operators and proves the existence of an `ideal' basis consisting of operators with given leading terms which satisfy the (generalized) Bianchi--Ricci identities without corrections. ER -
JANYŠKA, Josef a Martin MARKL. Combinatorial differential geometry and ideal Bianchi–Ricci identities II - the torsion case. \textit{Archivum Mathematicum}. Brno: Masaryk University, 2012, roč.~48, č.~1, s.~61-80. ISSN~0044-8753. doi:10.5817/AM2012-1-61.
|