

#### **MASARYK UNIVERSITY**

# Surveillance and Monitoring Systems based on Complex Event Processing

**Tomáš Pitner Masaryk University, Czech Republic** 

BIS 2012, Vilnius, Lithuania, May 23rd



- The monitoring system continuously
  - collects data from the monitored environment,
  - evaluates this data and events that are essential
  - takes the user's attention to important events,
  - or is able to respond automatically.



- TARGET
  - Used to monitor the operation of various objects
- SCOPE
  - From a single application, computer, or other device
  - Upto large infrastructures
- USERS
  - They help routine operators as well as strategic management



#### PURPOSE

- Check functionality detect faults
- Monitor reliability discover, prevent outages
- Protect find external and internal threats
- Explore what could not be modelled unusual behavior
- Save by discovering frauds even when not obvious
- Optimize tune the operation
- Measure performance real-time KPIs



- BENEFITS
  - See the current situation immediately
  - Aggregated and visualized form
  - Measure KPI in real-time
  - Standard behavior **profiles** (devices, systems, people)
  - Ensure business rules compliance
  - Guarranty SLAs



- IMPROVE THE SYSTEMS
  - Shorten the (incident, event) detection time
  - Reduce the time to discover the cause
  - Make the intervention more effective
  - Reduce staff costs, require less qualified personnel



**Maturity Levels** 

Adaptivity

Auto-adaptation
 Feedback – users, environment

Level 3 – Forecasting

- Pro-active SMS
- Early warning

Level 2 – Detection and Evaluation

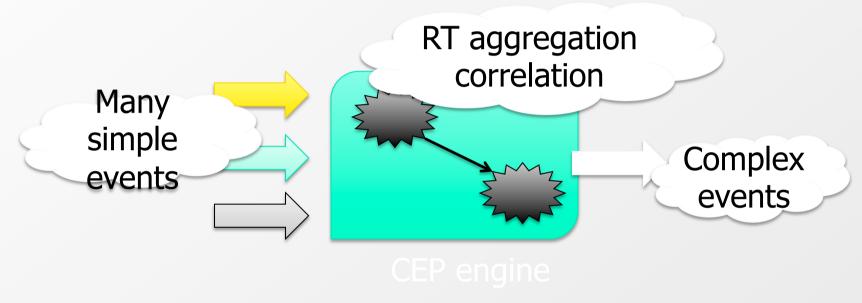
- Advances SMS
- Discover important situation events based on events, rules, context, and history

Level1 –
Filtering and Routing
Events

- Baseline SMS
- Get interesting events and present them to people

Level 0 – Event Collection

- Log storage
- Collecting, cleaning, storing




#### **Technology Requirements**

- Various domains and data origin
  - Measurements
  - Logs
  - Lower-level systems
- Large data volumes in realtime
  - 10k+ events per sec
- Context, correlation, adaptation
- How to achieve it ?




### **Complex Event Processing Technology**



- Real-time (or near RT) fast data flows
- Behaviour pattern detection
- Fraud detection, smart-grids, logistics, telco



**CEP-based Surveillance and Monitoring Center** 

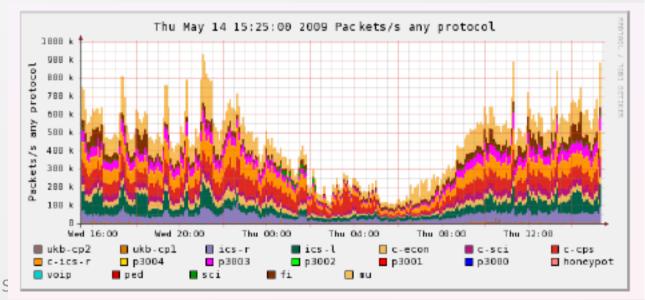




#### **Further Outline of the Talk**

- Domains
- Technology
- Applications
- Partners




#### **Application Domains**

- Computer network security
- Facility management
- Fraud detection in large enterprises / sales networks
- Computing resources, Clouds
- Complex technological blocks
- Industrial production
- Smart grids, power networks
- Precise agriculture

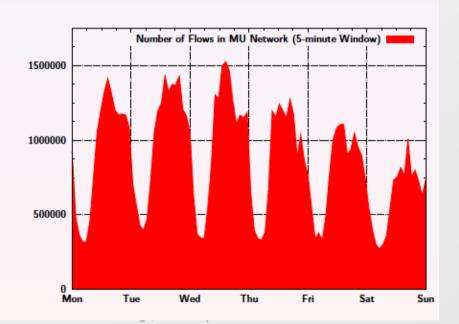


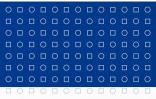
#### **Computer network security**

- Based on Netflow monitoring
- Complement to host-based approach
- Instead of restrictive policies
- The only way in open, research institutions






#### **Case of Masaryk University**

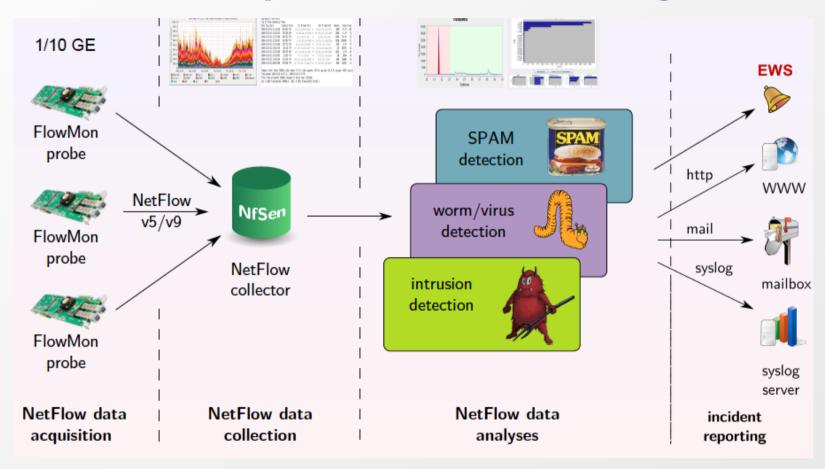



- 9 faculties: 200 departments and institutes
- 48,000 students and employees
- 15,000 networked hosts
- 2x 10 gigabit uplinks to CESNET (NREN)

| Interval | Flows | Packets | Bytes |
|----------|-------|---------|-------|
| Second   | 5 k   | 150 k   | 132 M |
| Minute   | 300 k | 9 M     | 8 G   |
| Hour     | 15 M  | 522 M   | 448 G |
| Day      | 285 M | 9.4 G   | 8 T   |
| Week     | 1.6 G | 57 G    | 50 T  |

Average traffic volume at the edge links in peak hours.






#### **Hierarchical nature**





#### **CEP-based Analysis and Other Processing**



### **Facility management**

0 0 0 0 0 0 0 0 0 0 0 0



### **Facility management**

- WHY SO INTERESTING (in general and for us)?
- Masaryk University
  - 9 Faculties, 40000+ students, 4500+ staff members
  - 250+ buildings (150 own), 20500+ rooms
  - 350000+ m<sup>2</sup>
  - Campus of Masaryk University, the largest in CZ
  - Technological equipment in newer buildings



### **Facility management @Campus of Masaryk Uni**





#### Facility management / What is observed?

- 30+ buildings at Campus, 100000 m<sup>2</sup>
- Heating, cooling, air conditioning, moisturizing
- Security: fire detectors, access control, cameras
- Other: audiovisual equipment, lighting, power supply, waste management
- Building monitoring system
- 100k records / day
- Alerts, Visualization



#### **Fraud detection**

- Applied for fuel-fraud detection at a gas-station network
- Many events from various domains
  - Accounting/billing
  - Fuel level in tanks
  - Volumes sold
  - Volumes supplied
- Saves dozens of M CZK annually for a moderate-size chain



#### **Computing resources, Clouds**

- All old-hat problems (grids) and many new ones
- Multi-tenancy
  - IaaS (machine provider)
  - PaaS (platform provider)
  - SaaS (app provider)
- Make it simple, easy to integrate
- Secure (the players should be isolated)
- Keep overhead low

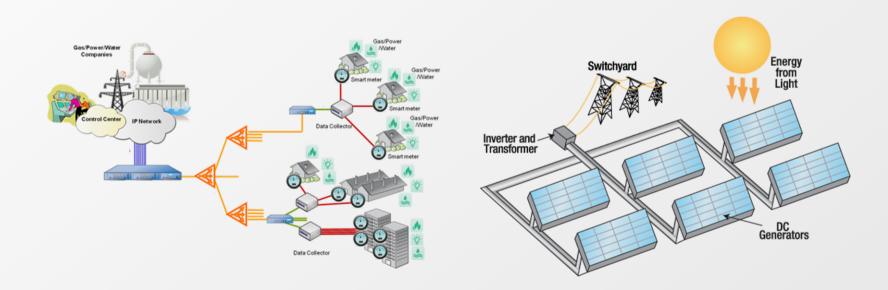


#### **Industrial Production**

Monitoring enhancement for production information system PHARIS






#### **Industrial Production – What is monitored?**

- Machines
  - Number active/working, cycles done
  - Operators, logins
  - Operations performed on machines
  - Reactions to events
  - Derive the machine cycle profiles
  - Detect faults, anomalities



### **Energy Production and Distribution, Smart-Grids**

- Monitoring large smart-meter networks
- Monitoring and controlling alternative energy sources





#### **Example in Smart-Grids**

- Large smart-meter infrastructure
  - milions of smart-meters in CZ
- What we know?
  - Status (consumption) every 15 min
  - Outages, failures at SM or communication
  - Switch-off
  - Unauthorized manipulation



#### **Example in Smart-Grids: The Size**

- Magnitude of up to 10 M smart-meters
- 10 TB of raw data
- 15 mins time frames important for some processing
- Legacy analytical apps
- New apps not just for smart-grids but also for smaller infrastructures/suppliers



### **Rounding up...**

Achieving higher SMS levels:

Level 0 – collecting data

Level 1 – basic patterns

... all for most legacy SMS ... but we need:

Level 2 – advanced

Level 3 – predictive

Level 4 – adaptive



#### Rounding up...

- CEP-based monitoring
  - Large-size, large data volume apps
  - CEP allows down-sizing, supports hierarchical structure
  - Recursive processing (low- and high-levels together)
  - Multi-domain nature
  - Context-aware monitoring
  - Identification of common patterns



#### **MASARYK UNIVERSITY**

## Thank you for your attention!

**Questions? At any time to** 

tomp@fi.muni.cz

Tomáš Pitner Masaryk University, Czech Republic