D 2012

GPU Optimization of Convolution for Large 3-D Real Images

KARAS, Pavel, David SVOBODA and Pavel ZEMČÍK

Basic information

Original name

GPU Optimization of Convolution for Large 3-D Real Images

Authors

KARAS, Pavel (203 Czech Republic, guarantor, belonging to the institution), David SVOBODA (203 Czech Republic, belonging to the institution) and Pavel ZEMČÍK (203 Czech Republic)

Edition

Neuveden, Proceedings of the International Conference on Advanced Concepts for Intelligent Vision Systems (ACIVS’12), p. 59-71, 13 pp. 2012

Publisher

Springer Berlin / Heidelberg

Other information

Language

English

Type of outcome

Stať ve sborníku

Field of Study

10201 Computer sciences, information science, bioinformatics

Country of publisher

Germany

Confidentiality degree

není předmětem státního či obchodního tajemství

Publication form

printed version "print"

References:

Impact factor

Impact factor: 0.402 in 2005

RIV identification code

RIV/00216224:14330/12:00057444

Organization unit

Faculty of Informatics

ISBN

978-3-642-33139-8

ISSN

Keywords in English

gpu; convolution; 3-D; image processing

Tags

Tags

International impact, Reviewed
Změněno: 2/4/2013 15:36, RNDr. Pavel Karas, Ph.D.

Abstract

V originále

In this paper, we propose a method for computing convolution of large 3-D images with respect to real signals. The convolution is performed in a frequency domain using a convolution theorem. Due to properties of real signals, the algorithm can be optimized so that both time and the memory consumption are halved when compared to complex signals of the same size. Convolution is decomposed in a frequency domain using the decimation in frequency (DIF) algorithm. The algorithm is accelerated on a graphics hardware by means of the CUDA parallel computing model, achieving up to 10x speedup with a single GPU over an optimized implementation on a quad-core CPU.

Links

GBP302/12/G157, research and development project
Name: Dynamika a organizace chromosomů během buněčného cyklu a při diferenciaci v normě a patologii
Investor: Czech Science Foundation
MUNI/A/0914/2009, interní kód MU
Name: Rozsáhlé výpočetní systémy: modely, aplikace a verifikace (Acronym: SV-FI MAV)
Investor: Masaryk University, Category A
2B06052, research and development project
Name: Vytipování markerů, screening a časná diagnostika nádorových onemocnění pomocí vysoce automatizovaného zpracování multidimenzionálních biomedicínských obrazů (Acronym: Biomarker)
Investor: Ministry of Education, Youth and Sports of the CR, Determination of markers, screening and early diagnostics of cancer diseases using highly automated processing of multidimensional biomedical images