
Normalization of Digital Mathematics Library
Content

MathML Canonicalization

David Formánek, Martin Líška, Michal Růžička, and Petr Sojka

Masaryk University, Faculty of Informatics
Botanická 68a, 602 00 Brno, Czech Republic

david.formanek@mail.muni.cz, martin.liski@mail.muni.cz,
mruzicka@mail.muni.cz, sojka@fi.muni.cz

Abstract. Paper discusses the needs for data normalization in a Digital
Mathematics Library (DML). Specifically, emphasis is given to canonical-
izing formulae encoded in Presentation MathML notation which starts
to be available in several DMLs and is used by DML applications. This
is a prerequisite for advanced processing — namely math enabled full-
text searching or semantic filtering and automated classification. Different
sources of MathML and their specifics are described. Several use cases of
possible formulae canonicalization transformations are listed and discussed
in detail. Findings are finally concluded and a design of a to-be-developed
canonicalization tool is outlined.

Keywords: MathML normalization, canonicalization, digital mathematics
libraries, DML, presentation MathML

1 Motivation

Modern Digital Mathematics Libraries (DML) such as EuDML [18,5] base their
services on paper semantics, i.e. fulltext handling, including mathematical for-
mulae, as well as basic metadata and Mathematics Subject Classification (MSC)
codes. Mathematics literature is widely dispersed across a high number of pub-
lishers, making it very difficult to collect fulltexts from these heterogeneous
sources. This situation is very different from other libraries, such as PubMed
Central for biomedical and life sciences, where publishers have an agreed work-
flow using the NLM Journal Publishing Tag Set and tools developed with funding
from the National Institutes of Health.

Full paper texts have to be ‘homogenized’, converted to some uniform repre-
sentation, in order for math-aware full-text searches [15] and paper similarity
computations [11,12] to work properly. These tasks are usually handled based
on a bag-of-words representation of a document text — vector space model —
every term (word, lemma) has its own dimension and the number of occurrences
of a term reflects its value. Non-textual terms such as mathematical formulae
are mostly not taken into account. This creates another challenge for DMLs, as

2 David Formánek, Martin Líška, Michal Růžička, and Petr Sojka

mathematical formulae are the essence of mathematical publications. There is an
average of 380 mathematical formulae per arXiv paper in the MREC database [8].
It has been reported [21] that even a single histogram of mathematical symbols
is sufficient for domain classification of a paper in the mathematical domain.

To reliably represent a paper for DML processing, including handling the
mathematics, it is necessary to

1. select a canonical representation of the non-textual structural entities appear-
ing in fulltexts (mathematical symbols, formulae, and equations); and

2. decide on equivalence classes for these entities (e.g., for which formulae
should be considered equal for given DML tasks such as search, similarity
computation, formulae editing, and conversion of math into Braille).

In this paper, we discuss the options for selecting the canonical representations
of formulae to be used in DML tools, and the canonicalization process — the
process — of computing this canonical representation from a variety of different
sources and formats.

Our primary motivation is the natural requirement for our own (Web)MIaS
system, which currently uses Presentation MathML [14] to operate correctly and
offer an expected search behaviour to users regardless of the MathML input
source. When a user posts a query to the system, the system must abstract it
from the underlying notational differences in order for it to behave correctly. This
requirement is increasingly emphasized with the growing number of different
sources of MathML. Currently there are three sources (LATEXML, Tralics, and user
input; the number is expected to increase). If they are not correctly normalized
the system misbehaves and it appears to users as if it simply does not work,
however good the underlying design is.

We have used UMCL library [1,2] for canonicalization in our MIaS system
sofar. However, we have found that the deficiencies of the software are so severe
(change of formulae semantics, slowness,. . .) [7, chapter 5], and the need for
canonicalization so important, that we have decided to design and implement
new canonicalization tool from scratch.

This paper is structured as follows: in Section 2, different sources of mathe-
matics are described and their differences are discussed. The core part of this
paper is Section 3, where several use cases of possible canonical representation
and canonicalization are documented and suggested. We conclude with Section 5,
and present a plan for future work.

2 MathML Sources

To store mathematical formulae in our documents we have chosen MathML1 —
an XML-based language — as a widely used, formally defined, but still evolving
standard. The widespread use of MathML and its XML base means of this

1 More precisely, Presentation MathML, as there are currently significantly more real-life
resources using this form of MathML than Content MathML.

Normalization of Digital Mathematics Library Content 3

language is supported by various tools in the whole document workflow. More
importantly, MathML can be used as a common language among the advanced
computer mathematical software packages that are extensively used by working
mathematicians.

On the author end of the document workflow the MathML code can be
‘hand made’ using simple plain text editors such as MS Windows Notepad, or
something more comfortable, such as specialized XML editors that are usually
part of various integrated development environments. For example, the formula
𝑥2 + 𝑦2 can be written as follows:

<math xmlns=’http://www.w3.org/1998/Math/MathML’>
<msup>

<mi>x</mi><mn>2</mn>
</msup>
<mo>+</mo>
<msup>

<mi>y</mi><mn>2</mn>
</msup>

</math>

Listing 1: Example of the ‘hand made’ formula 𝑥2 + 𝑦2

However, the XML nature of MathML makes the coding of more complex
formulae rather long for manual construction. Various software tools are more
frequent sources of MathML. MathML can be generated as an output / data
exchange format of complex specialized programs, such as Maple, Matlab, and
Mathematica [9,20,22], or web services, such as the well known Wolfram Al-
pha [23], that are extensively used by mathematicians to support their work.

generate::MathML(x^2 + y^2,
Content = FALSE, Annotation = FALSE)

<math xmlns=’http://www.w3.org/1998/Math/MathML’>
<mrow xref=’No7’>
<msup xref=’No3’>
<mi xref=’No1’>x</mi>
<mn xref=’No2’>2</mn>

</msup>
<mo>+</mo>
<msup xref=’No6’>
<mi xref=’No4’>y</mi>
<mn xref=’No5’>2</mn>

</msup>
</mrow>

</math>

Listing 2: Example of MathML export of the formula 𝑥2 + 𝑦2 by Matlab 7.9.0
MuPAD symbolic engine

4 David Formánek, Martin Líška, Michal Růžička, and Petr Sojka

<math xmlns=’http://www.w3.org/1998/Math/MathML’>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
<mo>+</mo>
<msup>
<mi>y</mi>
<mn>2</mn>
</msup>
</mrow>
</math>

Listing 3: Example of the MathML export of the Wolfram Alpha input query
‘x^2 + y^2’

On the consumer end of the document workflow MathML can be used as an
input for mathematical programs and services (Maple, Matlab, Mathematica,
Wolfram Alpha, etc.) or simply displayed — usually as part of an XHTML web
page — in a web browser with MathML support.

However, a large number of mathematical documents are produced using
the TEX typesetting system and authored in TEX markup. Thus, it is necessary to
be able to convert the TEX source code of mathematical formulae to the MathML
language. Our main motivation is the WebMIaS system. For more complex input
formulae, it would be uncomfortable for the user to manually construct queries
in MathML, as the code would be very complicated. The well known LATEX syntax
is far more appropriate for manual input. Therefore, we need a conversion from
LATEX to MathML as part of the WebMIaS input routine.

There are several tools that are able to convert TEX markup to the MathML
language. For example, arXMLiv [16] employs LATEXML [19]. The EuDML project
and our WebMIaS [8] system internally use Tralics [6].
<math xmlns="http://www.w3.org/1998/Math/MathML"

alttext="x^{2}+y^{2}" display="inline">
<semantics>

<mrow>
<msup><mi>x</mi><mn>2</mn></msup>
<mo>+</mo>
<msup><mi>y</mi><mn>2</mn></msup>

</mrow>
<annotation encoding="application/x-tex">

x^{2}+y^{2}
</annotation>

</semantics>
</math>

Listing 4: Example of LATEXML generated MathML of formula 𝑥2 + 𝑦2

Normalization of Digital Mathematics Library Content 5

<math xmlns=’http://www.w3.org/1998/Math/MathML’>
<mrow>

<msup>
<mi>x</mi> <mn>2</mn>

</msup>
<mo>+</mo>
<msup>

<mi>y</mi> <mn>2</mn>
</msup>

</mrow>
</math>

Listing 5: Example of Tralics generated MathML of formula 𝑥2 + 𝑦2

A frequent type of mathematical document in DML is the older papers that
are unavailable in any digital-format or are available only in an ‘end’ format
such as PDF that is suitable for reading and printing but is not appropriate for
direct MathML processing. These documents can be a significant part of the
DML content collection, so they are worth further processing.

Documents available in hard copy only can be scanned and processed using
InftyReader [17] optical character recognition (OCR) software. InftyReader has
a unique feature for detecting mathematical formulae in a scanned document.
These formulae can be subsequently saved as MathML.

<math xmlns="http://www.w3.org/1998/Math/MathML">
<msup>

<mi mathvariant="italic">x</mi>
<mrow>

<mn mathvariant="normal">2</mn>
</mrow>

</msup>
<mo mathvariant="normal">+</mo>
<msup>

<mi mathvariant="italic">y</mi>
<mrow>

<mn mathvariant="normal">2</mn>
</mrow>

</msup>
</math>

Listing 6: Example of InftyReader generated MathML from a PDF document
containing only formula the 𝑥2 + 𝑦2 in its body

Born-digital PDF documents with no available source codes can be processed
using the MaxTract software [3,4], which that is under intensive development as
part of the EuDML project. MaxTract generates LATEX source / XHTML+MathML
representation of the document based on an optical analysis of the positions of

6 David Formánek, Martin Líška, Michal Růžička, and Petr Sojka

characters on the page. The analysis is supported with information from the
fonts embedded in the processed document.

<math display="block" xmlns="&mathml;">
<mi>x</mi>
</math>

<p >

</p>

<p align="right" >
<math display="inline" xmlns="&mathml;">
<mi>y</mi>
</math>
</p>

<p >

</p>

Listing 7: Example of XHTML + MathML generated by the development version
of MaxTract from a PDF document containing only the formula 𝑥2 + 𝑦2 in its
body

During the MathDex project, it became clear that the most time- and resources-
consuming task in building a math search engine and database is the normaliza-
tion and conversion of heterogeneous sources [10]. As shown in Listings 1 — 6,
MathML can vary slightly due to the different ways a code was obtained, even
for a trivial formula like 𝑥2 + 𝑦2.

In a DML project, there can be differences in the final MathML encoding
even for semantically and structurally similar formulae, due to the origins of the
MathML from different sources. In Section 3, several more complicated examples
of possible ambiguities in MathML are discussed that have to be normalized to
allow math searches and similarity computation.

3 Use Cases

Using our public working demo of the WebMIaS system we discovered several
discrepancies in the form of MathML generated by the real-time TEX to MathML
converter we currently use — Tralics — and by the MathML canonicalizer from
the UMCL library. We employed the UMCL canonicalization module to try to
normalize the users’ MathML input and the MathML produced by the LATEXML
converter contained in the arXMLiv collection. Then we went through the Pre-
sentation MathML specifications and gathered a list of possible reformatting
rules we could perform.

Normalization of Digital Mathematics Library Content 7

The goal is to reduce the possible MathML scripts with the same semantics
and mathematical structures to just one representation. To have such a canoni-
calized representation is convenient for many applications, as was described in
Sections 1 and 2.

Analyzing the issues of possible inconsistencies and ambiguities of MathML-
encoded formulae raised design and strategy questions. Conceptual decisions
for handling different types of similar constructions and completely different
formulae need to be made.

More specifically, for example, should we try to keep the MathML compact
and reduce the number of nodes in transformations, or should we try to add
nodes for better disambiguation? Another question is: should our future canoni-
calization tool produce valid MathML according to this schema? Unquestionably,
this feature would be nice to have for many reasons and possible applications,
but it certainly adds more requirements and takes much more effort to design
and implement not only true/false validation, but also functional correctness
validation.

Below are described proposals and discussions of transformations that can be
performed with relatively minor difficulty. The list is not complete and is subject
to further evaluation.

3.1 Removing Elements and Attributes

Many of the MathML elements used in Presentation MathML make little or no
contribution to the semantics of the formula and therefore also to the formulae
for indexing and searching. These are usually elements that alter the appear-
ance of formulae in some way — space-like elements such as mspace, mpadded,
mphantom, maligngroup, and malignmark. They may occasionally have some
semantic meaning, but we prefer to canonicalize similar formulae into one rep-
resentation rather than risk treating the same formulae as different. Therefore,
these elements are best omitted. The content of the mtext element should be
indexed as normal text before removal.

Most element attributes are similarly undesirable. Many are used for for-
matting, affecting only the appearance of rendered formulae (for example, the
attributes linebreak and indentalign of the mo element). Others might have
some slight semantic significance, but are very uncommon and usually not very
important; we think these attributes should be removed. However, several excep-
tions exist. For instance, the element mfrac is used for fractions but its meaning
changes with the attribute linethickness set to 0, which express a binomial
coefficient. The attributes of the element mfenced are also important (see List-
ing 9). The attribute mathvariant can also influence formula semantics and
therefore should be preserved in all possible elements. For example, the MIaS
system makes use of this attribute so that hits with the assigned mathvariant
font specifying the attribute are more relevant.

8 David Formánek, Martin Líška, Michal Růžička, and Petr Sojka

<mfrac>
<mrow>
<mi> x </mi>
<mo> + </mo>
<mi> y </mi>
<mo> + </mo>
<mi> z </mi>

</mrow>
<mrow>
<mi> x </mi>
<mphantom>
<mo> + </mo>
<mi> y </mi>

</mphantom>
<mo> + </mo>
<mi> z </mi>

</mrow>
</mfrac>

Listing 8: Example of <mphantom> ommision

<mfrac>
<mrow>
<mi> x </mi>
<mo> + </mo>
<mi> y </mi>
<mo> + </mo>
<mi> z </mi>

</mrow>
<mrow>
<mi> x </mi>

<mo> + </mo>
<mi> z </mi>

</mrow>
</mfrac>

<mfrac linethickness="2"
bevelled="true">

<mi> a </mi>
<mi> b </mi>

</mfrac>

Listing 9: Example of omission of unnecessary attributes in mfrac

<mfrac>
<mi> a </mi>
<mi> b </mi>

</mfrac>

3.2 Unifying Fences

There are two approaches to creating fenced formulae. One is more semantic
and uses the mfenced element with the open, close, and separator attributes
to describe delimiters and separators. The other places fence symbols directly
within mo elements, and the fenced formula is enclosed in the mrow element to
group the elements together. Although the first approach seems to be valid, we
prefer the second one as it is more universal and allows easier conversion — e.g.,
converting addition to mfenced with attribute separators set to + would be
invalid. As shown in Listing 10, mfenced elements are replaced by a more general
mrow element, and fence and separator symbols are added as mo elements. Fenced
elements are further enclosed in an mrow element so it can be treated as a single
expression when needed. We could also consider unifying the symbols used as
separators/delimiters.

Normalization of Digital Mathematics Library Content 9

<mfenced open="[">

<mi> x </mi>

<mi> y </mi>

</mfenced>

Listing 10: Two ways of writing interval [𝑥, 𝑦)

<mrow>
<mo> [</mo>
<mrow>
<mi> x </mi>
<mo> , </mo>
<mi> y </mi>

<mrow>
<mo>) </mo>

</mrow>

3.3 Mrow Minimizing

The mrow element is used for grouping other elements. Its most common use case
is to obtain a given correct number of child elements of some parent element (e.g.
mfrac needs two child elements). We can determine unnecessary occurrences of
mrow by summing the number of its child elements and its siblings with respect
to the number of required elements for the parent element. Parents requiring
only one child element actually accept any number of elements that are treated
as if they are inferred within a single mrow element. Hence, the grouping element
is redundant and can be removed. In any case, the impact of the transformations
to any form of processing canonicalized notation must be taken into account and
the structure of the formulae cannot be violated. For instance, after removing the
mfenced enclosing element we ought to wrap the fenced formula with an mrow
if it is not.

<msqrt>
<mrow>
<mo> - </mo>
<mn> 1 </mn>

</mrow>
</msqrt>

Listing 11: Example of <mrow> removal after optimization
√
−1

<msqrt>

<mo> - </mo>
<mn> 1 </mn>

</msqrt>

3.4 Sub-/Superscripts Handling

The msubsup element used for attaching subscript and superscript to another
element at the same time is redundant — the same thing can be expressed as

10 David Formánek, Martin Líška, Michal Růžička, and Petr Sojka

a combination of msub and msup elements. The order of the elements is important.
When both elements are used, we prefer to place msub within msup (see List-
ing 12) because a subscript is usually more closely related to the base expression.
A similar problem and solution is related to the elements triad of munder, mover,
and munderover. Both msubsup and munderover can be used for limits of inte-
gration or bounds of summations; therefore, we should use only one canonical
representant.

<msubsup>
<mi> x </mi>

<mn> 1 </mn>

<mn> 2 </mn>
</msubsup>

Listing 12: Two ways of expressing 𝑥2
1

<msup>
<msub>
<mi> x </mi>
<mn> 1 </mn>

</msub>
<mn> 2 </mn>

</msup>

3.5 Applying Functions

There are many ways to express functions. Entity ⁡ (function application)
should be used but we cannot rely on that, so we suggest removing this operator
for the purpose of unification. The opposite approach — adding the function
application operator where it was omitted — could be rather tricky and could
lead to ambiguities. The name of the function should occur in the mi element
but it also can be considered as an operator and be placed in the mo element.
The arguments of a function can be fenced with parentheses or an mfenced
element or both. We chose canonical representation without an entity, with mrow
and parentheses (see Listing 14). Other ambiguities can be caused by different
invisible operators. For example, two identifiers in a subscript with no operator
usually means multiplication but it can mean separation too.

4 Design Considerations

The design and implementation decisions of the canonicalization application
depend on the purpose of new canonicalizer. Even though the use of the math
content by different tools might be similar, the experience shows that we hardly
could ‘fit one size’ for all applications. Thus the main design imperative is the
modularity, simplicity, extensibility and flexibility, so that the canonicalizer might
be easily modified when the need of the applications change. With different data
the canonicalizer might change even for different types of math-aware search.

Normalization of Digital Mathematics Library Content 11

<mi> f </mi>
<mo> ⁡ </mo>
<mrow>
<mo> (</mo>
<mi> x </mi>
<mo>) </mo>

</mrow>

Listing 13: Using or not using the operator for function application

<mi> f </mi>
<mrow>
<mo> (</mo>
<mi> x </mi>
<mo>) </mo>

</mrow>

<mi> sin </mi>

<mo> ⁡ </mo>

<mi> x </mi>

Listing 14: Adding parentheses to sine function argument

<mi>sin</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>

</mrow>

Examples in subsections of previous section form set of modules that do the
necessary MathML tree transformations as recursive procedures on MathML
trees.

According to the expected size of the input data set, effectiveness, the speed
of the canonicalization application is also a critical parameter — in our MREC [8]
corpora there is 168,000,000 formulae to canonicalize. Thus, use of standard XSL
transformations does not seem to be appropriate, for example, as UMCL example
showed.

Another key decision is handling of invalid input MathML and question of
valid MathML on the output as mentioned in Section 3.

As the (Web)MIaS system as well as other core parts of EuDML system
(Lucene) do use the Java platform is seems to be natural to use Java also for the
implementation of canonicalization application.

5 Conclusions and Future Work

We consider MathML canonicalization important for proper functioning of seve-
ral math-aware applications that handle documents in DMLs. We have defined
the problems and enumerated the most important use cases as modules of newly
designed canonicalizer.

We are currently working on finishing the design and implementation of a
first version of application that will be used for the task of math indexing in MIaS

12 David Formánek, Martin Líška, Michal Růžička, and Petr Sojka

system employed in EuDML project. By evaluation of this task we will verify our
design decisions and plan to use it for another tools working with math fulltext
data (semantic similarity tools as gensim [12]).

Acknowledgements This work was partially supported by the European Union
through its Competitiveness and Innovation Programme (Information and Com-
munication Technologies Policy Support Programme, ‘Open access to scientific
information’, Grant Agreement No. 250503, a project of the European Digital
Mathematics Library, EuDML).

References
1. Archambault, D., Berger, F., Moço, V.: Overview of the “Universal Maths Conversion

Library”. In: Pruski, A., Knops, H. (eds.) Assistive Technology: From Virtuality to
Reality: Proceedings of 8th European Conference for the Advancement of Assistive
Technology in Europe AAATE 2005, Lille, France. pp. 256–260. IOS Press, Amsterdam,
The Netherlands (Sep 2005)

2. Archambault, D., Moço, V.: Canonical MathML to Simplify Conversion of MathML to
Braille Mathematical Notations. In: Miesenberger, K., Klaus, J., Zagler, W., Karshmer,
A. (eds.) Computers Helping People with Special Needs, Lecture Notes in Computer
Science, vol. 4061, pp. 1191–1198. Springer Berlin / Heidelberg (2006), http://dx.
doi.org/10.1007/11788713_172

3. Baker, J.B., Sexton, A.P., Sorge, V.: A linear grammar approach to mathematical formula
recognition from PDF. In: Proceedings of the Conferences in Intelligent Computer
Mathematics, CICM 2009. LNAI, vol. 5625, pp. 201–216. Springer (2009)

4. Baker, J.B., Sexton, A.P., Sorge, V.: Towards reverse engineering of PDF documents.
In: Sojka, P., Bouche, T. (eds.) Towards a Digital Mathematics Library, DML 2011. pp.
65–75. Masaryk University Press, Bertinoro, Italy (July 2011), http://hdl.handle.
net/10338.dmlcz/702603

5. Borbinha, J., Bouche, T., Nowiński, A., Sojka, P.: Project EuDML—A First Year
Demonstration. In: Davenport, J.H., Farmer, W.M., Urban, J., Rabe, F. (eds.) Intel-
ligent Computer Mathematics. Proceedings of 18th Symposium, Calculemus 2011,
and 10th International Conference, MKM 2011. Lecture Notes in Artificial Intelli-
gence, LNAI, vol. 6824, pp. 281–284. Springer-Verlag, Berlin, Germany (Jul 2011),
http://dx.doi.org/10.1007/978-3-642-22673-1_21

6. Grimm, J.: Producing MathML with Tralics. In: Sojka [13], pp. 105–117, http://dml.
cz/dmlcz/702579

7. Jarmar, M.: Conversion of Mathematical Documents into Braille. Master’s thesis,
Faculty of Informatics (Jan 2012), https://is.muni.cz/th/172981/fi_m/?lang=en

8. Líška, M., Sojka, P., Růžička, M., Mravec, P.: Web Interface and Collection for Mathe-
matical Retrieval. In: Sojka, P., Bouche, T. (eds.) Proceedings of DML 2011. pp. 77–84.
Masaryk University, Bertinoro, Italy (Jul 2011), http://www.fi.muni.cz/~sojka/
dml-2011-program.html

9. Maplesoft, a division of Waterloo Maple Inc.: MathML – Maple Help (Apr 2012),
http://www.maplesoft.com/support/help/Maple/view.aspx?path=MathML

10. Munavalli, R., Miner, R.: MathFind: A Math-Aware Search Engine. In: Proceedings of
the 29th annual international ACM SIGIR conference on Research and development
in information retrieval. pp. 735–735. SIGIR ’06, ACM, New York, NY, USA (2006),
http://doi.acm.org/10.1145/1148170.1148348

http://dx.doi.org/10.1007/11788713_172
http://dx.doi.org/10.1007/11788713_172
http://hdl.handle.net/10338.dmlcz/702603
http://hdl.handle.net/10338.dmlcz/702603
http://dx.doi.org/10.1007/978-3-642-22673-1_21
http://dml.cz/dmlcz/702579
http://dml.cz/dmlcz/702579
https://is.muni.cz/th/172981/fi_m/?lang=en
http://www.fi.muni.cz/~sojka/dml-2011-program.html
http://www.fi.muni.cz/~sojka/dml-2011-program.html
http://www.maplesoft.com/support/help/Maple/view.aspx?path=MathML
http://doi.acm.org/10.1145/1148170.1148348

Normalization of Digital Mathematics Library Content 13

11. Řehůřek, R., Sojka, P.: Automated Classification and Categorization of Mathematical
Knowledge. In: Autexier, S., Campbell, J., Rubio, J., Sorge, V., Suzuki, M., Wiedijk,
F. (eds.) Intelligent Computer Mathematics—Proceedings of 7th International Con-
ference on Mathematical Knowledge Management MKM 2008. Lecture Notes in
Computer Science LNCS/LNAI, vol. 5144, pp. 543–557. Springer-Verlag, Berlin, Hei-
delberg (Jul 2008)

12. Řehůřek, R., Sojka, P.: Software Framework for Topic Modelling with Large Corpora.
In: Proceedings of LREC 2010 workshop New Challenges for NLP Frameworks. pp. 45–
50. ELRA, Valletta, Malta (May 2010), http://is.muni.cz/publication/884893/en,
software available at http://nlp.fi.muni.cz/projekty/gensim

13. Sojka, P. (ed.): Towards a Digital Mathematics Library. Masaryk University, Paris,
France (Jul 2010), http://www.fi.muni.cz/~sojka/dml-2010-program.html

14. Sojka, P., Líška, M.: Indexing and Searching Mathematics in Digital Libraries (Mar
2011), submitted to MKM 2011

15. Sojka, P., Líška, M.: Indexing and Searching Mathematics in Digital Libraries – Archi-
tecture, Design and Scalability Issues. In: Davenport, J.H., Farmer, W.M., Urban, J.,
Rabe, F. (eds.) Intelligent Computer Mathematics. Proceedings of 18th Symposium,
Calculemus 2011, and 10th International Conference, MKM 2011. Lecture Notes in
Artificial Intelligence, LNAI, vol. 6824, pp. 228–243. Springer-Verlag, Berlin, Germany
(Jul 2011), http://dx.doi.org/10.1007/978-3-642-22673-1_16

16. Stamerjohanns, H., Kohlhase, M., Ginev, D., David, C., Miller, B.: Transforming Large
Collections of Scientific Publications to XML. Mathematics in Computer Science 3,
299–307 (2010), http://dx.doi.org/10.1007/s11786-010-0024-7

17. Suzuki, M., Tamari, F., Fukuda, R., Uchida, S., Kanahori, T.: INFTY — An integrated
OCR system for mathematical documents. In: Vanoirbeek, C., Roisin, C., Munson, E.
(eds.) Proceedings of ACM Symposium on Document Engineering 2003. pp. 95–104.
ACM, Grenoble, France (2003)

18. Sylwestrzak, W., Borbinha, J., Bouche, T., Nowiński, A., Sojka, P.: EuDML—Towards
the European Digital Mathematics Library. In: Sojka [13], pp. 11–24, http://dml.cz/
dmlcz/702569

19. The LaTeXML project: The LaTeXML Developer Portal (Apr 2012), https://trac.
mathweb.org/LaTeXML/

20. The MathWorks, Inc.: MuPAD – Matlab (May 2012), http://www.mathworks.com/
discovery/mupad.html

21. Watt, S.M.: Mathematical Document Classification via Symbol Frequency Analysis.
In: Sojka, P. (ed.) Towards Digital Mathematics Library—Proceedings of DML 2008.
pp. 29–40. Masaryk University, Birmingham, UK (Jul 2008), http://www.fi.muni.
cz/~sojka/dml-2008-program.xhtml

22. Wolfram: Mathematica Import/Export Format : MathML (Apr 2012), http://
reference.wolfram.com/mathematica/ref/format/MathML.html

23. Wolfram Alpha LLC: Wolfram Alpha (Apr 2012), http://www.wolframalpha.com/

http://is.muni.cz/publication/884893/en
http://nlp.fi.muni.cz/projekty/gensim
http://www.fi.muni.cz/~sojka/dml-2010-program.html
http://dx.doi.org/10.1007/978-3-642-22673-1_16
http://dx.doi.org/10.1007/s11786-010-0024-7
http://dml.cz/dmlcz/702569
http://dml.cz/dmlcz/702569
https://trac.mathweb.org/LaTeXML/
https://trac.mathweb.org/LaTeXML/
http://www.mathworks.com/discovery/mupad.html
http://www.mathworks.com/discovery/mupad.html
http://www.fi.muni.cz/~sojka/dml-2008-program.xhtml
http://www.fi.muni.cz/~sojka/dml-2008-program.xhtml
http://reference.wolfram.com/mathematica/ref/format/MathML.html
http://reference.wolfram.com/mathematica/ref/format/MathML.html
http://www.wolframalpha.com/

	Normalization of Digital Mathematics Library Content

