R 2012

HEp-2 Cells Classifier

STOKLASA, Roman, Tomáš MAJTNER, David SVOBODA and Michal BATKO

Basic information

Original name

HEp-2 Cells Classifier

Name in Czech

Klasifikátor HEp-2 buniek

Authors

STOKLASA, Roman (703 Slovakia, belonging to the institution), Tomáš MAJTNER (703 Slovakia, belonging to the institution), David SVOBODA (203 Czech Republic, guarantor, belonging to the institution) and Michal BATKO (203 Czech Republic, belonging to the institution)

Edition

2012

Other information

Language

English

Type of outcome

Software

Field of Study

20206 Computer hardware and architecture

Country of publisher

Czech Republic

Confidentiality degree

není předmětem státního či obchodního tajemství

RIV identification code

RIV/00216224:14330/12:00057512

Organization unit

Faculty of Informatics

Keywords in English

classifier; image; classification; cells

Technical parameters

Software pre rozpoznávanie HEp-2 buniek. Program je schopný spracovať obrázky HEp-2 buniek nasnímaných fluorescenčným mikroskopom a následne ich zaradiť do jednej zo šiestich základnych kategórii: centromere, coarse speckled, fine speckled, homogeneous, cytoplasmic, nucleolar. Implementácia je realizovaná v jazyku Java a C++. Zodpovedné osoby: Roman Stoklasa <rstoki@seznam.cz> a Tomáš Majtner <majtner@ics.muni.cz> Adresa: Fakulta informatiky Masarykovy univerzity, Botanická 68a, 602 00 Brno.

Tags

Tags

International impact
Změněno: 22/4/2013 15:42, RNDr. Pavel Šmerk, Ph.D.

Abstract

V originále

Human Epithelial (HEp-2) cells are commonly used in the Indirect Immunofluorescence (IIF) tests to detect autoimmune diseases. The diagnosis consists of searching and classification to specific patterns created by Anti-Nuclear Antibodies (ANAs) in the patient serum. Evaluation of the IIF test is mostly done by humans, which means that it is highly dependent on the experience and expertise of the physician. Therefore, a significant amount of research has been focused on the development of computer aided diagnostic systems which could help with the analysis of images from microscopes. This work deals with the design and development of HEp-2 cells classifier. The classifier is able to categorize pre-segmented images of HEp-2 cells into 6 classes. The core of this engine consists of several image descriptors (such as Haralick features, Local Binary Patterns, surface description and a granulometry-based descriptor). These descriptors produces vectors that form metric spaces. k-NN classification is based on aggregated distance function which combines several features together. An extensive set of evaluations was performed on the publicly available MIVIA HEp-2 images dataset which allows a direct comparison of our approach with other solutions. The evaluation results show, that our approach is one of the top performing classifiers among the others which participated in the Contest on HEp-2 Cells Classification hosted by the 21th International Conference on Pattern Recognition 2012.

Links

GBP302/12/G157, research and development project
Name: Dynamika a organizace chromosomů během buněčného cyklu a při diferenciaci v normě a patologii
Investor: Czech Science Foundation
MUNI/A/0914/2009, interní kód MU
Name: Rozsáhlé výpočetní systémy: modely, aplikace a verifikace (Acronym: SV-FI MAV)
Investor: Masaryk University, Category A