Detailed Information on Publication Record
2012
HEp-2 Cells Classifier
STOKLASA, Roman, Tomáš MAJTNER, David SVOBODA and Michal BATKOBasic information
Original name
HEp-2 Cells Classifier
Name in Czech
Klasifikátor HEp-2 buniek
Authors
STOKLASA, Roman (703 Slovakia, belonging to the institution), Tomáš MAJTNER (703 Slovakia, belonging to the institution), David SVOBODA (203 Czech Republic, guarantor, belonging to the institution) and Michal BATKO (203 Czech Republic, belonging to the institution)
Edition
2012
Other information
Language
English
Type of outcome
Software
Field of Study
20206 Computer hardware and architecture
Country of publisher
Czech Republic
Confidentiality degree
není předmětem státního či obchodního tajemství
RIV identification code
RIV/00216224:14330/12:00057512
Organization unit
Faculty of Informatics
Keywords in English
classifier; image; classification; cells
Technical parameters
Software pre rozpoznávanie HEp-2 buniek. Program je schopný spracovať obrázky HEp-2 buniek nasnímaných fluorescenčným mikroskopom a následne ich zaradiť do jednej zo šiestich základnych kategórii: centromere, coarse speckled, fine speckled, homogeneous, cytoplasmic, nucleolar.
Implementácia je realizovaná v jazyku Java a C++.
Zodpovedné osoby: Roman Stoklasa <rstoki@seznam.cz> a Tomáš Majtner <majtner@ics.muni.cz>
Adresa: Fakulta informatiky Masarykovy univerzity, Botanická 68a, 602 00 Brno.
Tags
International impact
Změněno: 22/4/2013 15:42, RNDr. Pavel Šmerk, Ph.D.
Abstract
V originále
Human Epithelial (HEp-2) cells are commonly used in the Indirect Immunofluorescence (IIF) tests to detect autoimmune diseases. The diagnosis consists of searching and classification to specific patterns created by Anti-Nuclear Antibodies (ANAs) in the patient serum. Evaluation of the IIF test is mostly done by humans, which means that it is highly dependent on the experience and expertise of the physician. Therefore, a significant amount of research has been focused on the development of computer aided diagnostic systems which could help with the analysis of images from microscopes. This work deals with the design and development of HEp-2 cells classifier. The classifier is able to categorize pre-segmented images of HEp-2 cells into 6 classes. The core of this engine consists of several image descriptors (such as Haralick features, Local Binary Patterns, surface description and a granulometry-based descriptor). These descriptors produces vectors that form metric spaces. k-NN classification is based on aggregated distance function which combines several features together. An extensive set of evaluations was performed on the publicly available MIVIA HEp-2 images dataset which allows a direct comparison of our approach with other solutions. The evaluation results show, that our approach is one of the top performing classifiers among the others which participated in the Contest on HEp-2 Cells Classification hosted by the 21th International Conference on Pattern Recognition 2012.
Links
GBP302/12/G157, research and development project |
| ||
MUNI/A/0914/2009, interní kód MU |
|