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Abstract. Subsequence matching has appeared to be an ideal approach
for solving many problems related to the fields of data mining and sim-
ilarity retrieval. It has been shown that almost any data class (audio,
image, biometrics, signals) is or can be represented by some kind of time
series or string of symbols, which can be seen as an input for various sub-
sequence matching approaches. The variety of data types, specific tasks
and their solutions is so wide that their proper comparison and com-
bination suitable for a particular task might be very complicated and
time-consuming. In this work, we present a new generic Subsequence
Matching Framework (SMF) that tries to overcome the aforementioned
problem by a uniform frame that simplifies and speeds up the design, de-
velopment and evaluation of subsequence matching related systems. We
identify several relatively separate subtasks solved differently over the lit-
erature and SMF enables to combine them in a straightforward manner
achieving new quality and efficiency. The strictly modular architecture
and openness of SMF enables also involvement of efficient solutions from
different fields, for instance advanced metric-based indexes.

1 Introduction

A large fraction of the data being produced in current digital era is in the form
of time series or can be transformed into sequences of numbers. This concept
is very natural and ubiquitous: audio signals, various biometric data, image
features, economic data, etc. are often viewed as time series and need to be also
organized and searched in this way.

One of the key research issues drawing a lot of attention during the last two
decades is the subsequence matching problem, which can be basically formulated
as follows: Given a query sequence, find the best-matching subsequence from
the sequences in the database. Depending on the specific data and application,
this general problem has many variants — query sequences of fixed or variable
size, data-specific definition of sequence matching, requirement of dynamic time
warping, etc. Therefore, the effort in this research area resulted in many ap-
proaches and techniques — both, very general and those focusing on a specific
fragment of this complex problem.

The leading authors in this field identified two main problems that limit the
comparability and cooperation potential of various approaches: the data bias (al-
gorithms are often evaluated on heterogeneous datasets) and the implementation
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bias (the implementation of the specific technique can strongly influence exper-
iment results) [I]. The effort to overcome the data bias is expressed by founding
a common set of data collections [2] which is publicly available and that should
be used by any consequent research in this area. However, the implementation
bias lingers, which also obstructs a straightforward combination of compatible
approaches whose interconnection could be fruitful.

Analysis of this situation brought us to conclusion that there is a need for
a unified environment for developing, prototyping, testing, and combination of
subsequence matching approaches. After a brief overview and analysis of current
state of the field (Section[Z), we propose a generic subsequence matching frame-
work (SMF) in Section Bl Section [ contains a detailed example of design and
realization of a subsequence matching algorithm with the aid of SMF. The paper
concludes in Section [Bl by future research directions that cover possible perfor-
mance boost enabled by a straightforward cooperation of SMF with advanced
distance-based indexing and searching techniques [3/4]. Due to space limitations,
an extended version of this work is available as a technical report [5].

2 Subsequence Matching Approaches

The field opening paper by Faloutsos et al. [6] introduced a subsequence matching
application model that has been used ever since only with smaller modifications.
The model can be summarized in the following four steps that should be adopted
by a subsequence matching application:

slicing of the time series sequences (both data and query) into shorter subse-
quences (of a fixed length),

transforming each subsequence into lower dimension,

indexing the subsequences in a multi-dimensional index structure,

searching in the index with a distance measure that obeys the lower bounding
lemma on the transformed data.

Originally [6], this approach was demonstrated on a subsequence matching al-
gorithm that used the sliding window approach to slice the indexed data and
disjoint window for the query. The Discrete Fourier Transformation (DFT) was
used for dimensionality reduction and the data was indexed using the minimum
bounding rectangles in R-Tree [7]. The Euclidean distance was used for searching
since it satisfies the lower bounding lemma on data transformed by DFT.

The data representation and the choice of distance function are fundamen-
tal questions for each specific application. Current approaches regarding these
questions were thoroughly overviewed and analyzed [5] with a conclusion that
the questions of data representation and distance function can be practically
separate from the specific subsequence matching algorithm; it is important to
pair the data representation and the distance function wisely in order to satisfy
the lower bounding lemma [6].

The work by Faloutsos et al. [6] encouraged many following works. Moon
et al. [8] suggested a dual approach for slicing and indexing sequences. This
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DualMatch uses the sliding windows for queries and disjoint windows for data
sequences to reduce the number of windows that are indexed. DualMatch was
followed by the generalization of windows creation method called GeneralMatch
[9]. Another significant leap forward was made by the effort of Keogh et al. in
their work about exact indexing of Dynamic Time Warping [10]. They introduced
a similarity measure that is relatively easy to compute and it lower-bounds the
expensive DTW function. This approach was further enhanced by improving I/O
part of the subsequence matching process using Deferred Group Subsequence
Retrieval introduced in [IT].

If we focus on the performance side of the system, we have to employ enhance-
ments like indexing, lower bounding, window size optimization, reducing I/O
operations or approximate queries. Lots of approaches for building subsequence
matching applications often use the very same techniques for solving common
sub-tasks included in the whole retrieval process and changes only some parts
with some novel approach. As a result, the same parts of the process (like DFT
or DWT) are implemented repeatedly which leads to the phenomenon of the
implementation bias [I]. The modern subsequence matching approaches [1TI10]
employ many smaller tasks in the retrieval process that solve sub-problems like
optimizing I/O operations. Implementations of routines that solve such sub-
problems should be reusable and employable in similar approaches. This led
us to think about the whole subsequence matching process as a chain of sub-
tasks, each solving a small part of the problem. We have observed that many of
the published approaches fit into this model and their novelty is often only in
reordering, changing or adding new subtask implementation into the chain.

3 Subsequence Matching Framework

In this section, we describe the general Subsequence Matching Framework (SMF)
that is currently available under GPL license at http://mufin.fi.muni.cz/smf/.
The framework can be perceived on the following two levels:

— on the conceptual level, the framework is composed of mutually cooperating
modules, each of which solves a specific sub-task, and these modules are
cooperating within specific subsequence matching algorithms;

— on the implementation level, SMF defines the functionality of individual
module types and their communication interfaces; a subsequence matching
algorithm is implemented as a skeleton that combines module types in a spe-
cific way and these can be instantiated by actual module implementations.

In Section Bl we describe the common sub-problems (sub-tasks) that we iden-
tified in the field and we define corresponding module types (conceptual level).
Further, in Section 3.2 we justify our approach by describing fundamental sub-
sequence algorithms in terms of SMF modules and we present a straightforward
implementation of these algorithms within SMF. Section[3.3is devoted to details
about implementation of the framework.
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Table 1. Notation used throughout this paper

Symbol Definition

S[k] the k-th value of the sequence S

S[i:j]  subsequence of S from S[i] to S[j], inclusive
S.len the length of sequence S

S.id the unique identifier of sequence S

S’.pid  if S’ is subsequence of S then S’.pid = S.id
S’.offset if S’ = Si: j] then S".offset =i and S'.len = j —i+1
D(Q,S) distance between two sequences @ and S

The key term in the whole framework is, naturally, a sequence. As we want
to keep the framework as general as possible, we do not lay practically any re-
strictions on the components of the sequence — it can be integers, real numbers,
vectors of numbers, or any more sophisticated structures. The sequence similar-
ity functions are defined relatively independently of specific sequence type (see
Section B3)). In the following, we will use the notation summarized in Table [Il

3.1 Common Sub-problems: Modules in SMF

Studying the field of subsequence matching, we identified several common sub-
problems addressed by a number of approaches in some sense. Specifically, we
can see the following sub-tasks that correspond to individual modules in SMF.

Data Representation (Module: Data Transformer). The raw data se-
quences entering an application are often transformed into other representation
which can be motivated either by simple dimensionality reduction (DFT, DWT,
SVD, PAA) [6/12/13/14] or also by extracting some important characteristics
that should improve the effectiveness of the retrieval [I5]. In either case, the
general task can be defined simply as follows: Transform given sequence S into
another sequence S’. We will use the symbol in Figure[ll (a) for this data trans-
former module. The following table summarizes information about this module
and gives a few examples of specific approaches implementing this functionality.

data transformer transform sequence S into sequence S’

DFT apply the DFT on sequence of real numbers S [0]
PAA apply the PAA on sequence of real numbers S [14]
Landmarks extract landmarks from sequence S [15]

Windows and Subsequences (Module: Slicer). Majority of the subse-
quence matching approaches partitions the data and/or query sequences into
subsequences of, typically, fixed length (windows) [GISI9TT]. Again, this task can
be isolated, well defined, and the implementation can be reused in many variants
of subsequence matching algorithms. Partitioning a sequence S, each resulting
subsequence S’ = S[i : j] has S’.pid = S.id, S".offset =i, and S'.len = j —i+ 1.
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Fig. 1. Types of SMF modules and their notation

The module will be denoted as in Figure [l (b) and its description and specific
examples are as follows:

sequence slicer partition S into list of subsequences 57,..., S,
disjoint slicer partition S disjointly into subsequences of length w [6]
sliding slicer  use sliding window of size w to partition S [6]

Sequence Distances (Module: Distance Function). There is a high num-
ber of specific distance functions D that can be evaluated between two sequences
S and T. The intention of SMF is to partially separate the distance functions
from the data and to use the specific distance function as a parameter of the
algorithm (see Section [33] for details on realization of this independence). Of
course, it is the matter of configuration to use appropriate function for respective
data type, e.g. to preserve the lower bounding property. The distance functions
symbol is in Figure[Il (¢) and it can be summarized as follows:

distance function evaluate dissimilarity of sequences S, T

L, metrics evaluate distance L, on equally long number sequences
DTW use DTW on any pair of number sequences S, T' [10]
ERP calculate Edit distance with Real Penalty on S, T' [17]

LB PAA, LB Keogh measures which lower-bound the DTW [10]

Efficient Indexing (Module: Distance Index). An efficient subsequence-
matching algorithm typically employs an index to efficiently evaluate distance-
based queries on the stored (sub-)sequences using the query-by-example paradigm
(QBE). Again, we see the choice of the specific index as a relatively separate com-
ponent of the whole algorithm and thus as an exchangeable module. Also, we see
a space for improvement in boosting the efficiency of this component in future.
We denote this module as in Figure [l (d):

distance index evaluate efficiently distance-based QBE queries
R-Tree family index sequences as n-dimensional spatial data
iSAX tree use a symbolic representation of the sequences [18/19]
metric indexes index and search the data according to mutual distances [3]
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Fig. 2. Schema of the fundamental subsequence matching algorithm [6]

Efficient Aligning (Module: Sequence Storage). The approaches that
use sequence slicing typically also need to store the original whole sequences.
The slice index (for window size w) returns a set of candidate subsequences S,
S’.len = w each matching some query subsequence Q' such that Q’.len = w. If
the query sequence @ is actually longer than w, the subsequent task is to align @
to corresponding subsequence S[i : (i+Q.len—1)] where i = S'.offset — Q’. offset
and S.id = S’.pid. To do this aligning for each S’ in the candidate set may be
very demanding. For smaller datasets, this can be done in memory with no spe-
cial treatment, but more advanced approaches are profitable on disk [I1]. We
will call this module sequence storage (Figure[ll (¢)) and it is specified as follows:

sequence storage store sequences S and return S[i : j] for given S.id
hash map basic hash map evaluating queries one by one
deferred retrieval deferred group sequence retrieval (I/O efficient) [I1]

3.2 Subsequence Matching Strategies in SMF

Staying at the conceptual level, let us have a look at the whole subsequence
matching algorithms and their composition from individual modules introduced
above. As an example, we take again the fundamental algorithm [6] for general
subsequence matching of queries @), Q.len > w for an established window size
w. The schema of a slight modification of this algorithm is in Figure 2l The
solid lines correspond to data insertion and the dash lines (with italic labels)
correspond to the query processing.

A data sequence S is first partitioned by the sliding window approach (slid-
ing slicer module) into slices S’ = S[i : (i + w — 1)], these are transformed
by Discrete Fourier Transformation (data transformer module DFT), and the
Minimum Bounding Rectangles (MBR) of these transformed slices are stored
in an R*-tree storage (distance index module); the original sequences S is also
stored (whole sequence storage module). Processing a subsequence query, the
query sequence @ is partitioned using the disjoint slicer module, each slice Q'
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(Q'.len = w) is transformed by DFT and it is searched within the slice index (us-
ing Lo distance or a simple binary function intersect). For each of the returned
candidate subsequences S’, a query-corresponding alignment S[i : (i4+Q.len—1)]
is retrieved from the whole storage (see above for details) and the candidate set
is refined using Lo distance D(Q, S[i : (i + Q.len — 1)]).

Preserving the skeleton of an algorithm (module types and their cooperation),
one can substitute individual modules with other compatible modules obtaining
a different processing efficiency or even a fundamentally different algorithm. For
instance, swapping the sliding and disjoint slicer modules practically results in
the DualMatch approach [g].

3.3 Implementation

The SMF was not implemented from scratch but with the aid of framework
MESSIF [20]. The MESSIF is a collection of Java packages supporting mainly
development of metric-based search approaches. SMF uses especially the follow-
ing MESSIF functionality:

— encapsulation of the concept of data objects and distances,

— implementation of the queries and query evaluation process,

— distance based indexes (building, querying),

— configuration and management of the algorithm via text config files.

The sequence is in SMF handled very generally; it is defined as an interface which
requires that each specific sequence type (e.g. a float sequence) must, among
other, specify the distance between two sequence components d(S[i], S’[j]). For
number sequences, this distances could be, naturally, absolute value of differences
d(S[i], S'[j]) = |S[i] — S’[4]l, but one can imagine complex sequence components,
for instance vectors where d could be an L, metric. Implementation of a sequence
distance D(S,S”) (for instance, DTW) then treats S and S’ only as general
sequences that use the component distance d and, thus, this implementation can
be independent of specific sequence type.

4 Example of Subsequence Algorithm with SMF

An algorithm is within SMF implemented as a skeleton — module types, their
connections via specified interfaces, and all algorithm-specific operations. The
algorithm is then configured and instantiated by a text configuration file — mod-
ule types required by the algorithm skeleton are filled by specific modules. Let
us describe this principle on an example of a simple algorithm for general sub-
sequence matching with variable query length — see Figure Bl for this skeleton
schema. It uses two slicer modules, one distance index with a distance function,
and a sequence storage for the whole sequences (again, with a distance function).

In order to run this algorithm, we have to instantiate these module types with
specific modules. Figure H] shows the key part of a SMF configuration file that
starts such algorithm. On the first two lines, the sliding slicer module is defined
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Fig. 3. Skeleton of a simple VariableQueryAlgorithm algorithm

slidingSlicer = namedInstanceAdd
slidingSlicer.param.1 = smf.modules.slicer.SlidingSlicer (<w>)

disjointSlicer = namedInstanceAdd
disjointSlicer.param.1 = smf.modules.slicer.DisjointSlicer (<w>)

index = namedInstanceAdd
index.param.1l = smf.modules.index.ApproxAlgorithmDistanceIndex(mIndex)

seqStorage = namedInstanceAdd
seqStorage.param.1 = smf.modules.seqgstorage.MemorySequenceStorage ()

startSearchAlg = algorithmStart
startSearchAlg.param.1 = smf.algorithms.VariableQueryAlgorithm
startSearchAlg.param.2 = smf.sequence.impl.SequenceFloatL2

startSearchAlg.param.3 = seqStorage
startSearchAlg.param.4 = index
startSearchAlg.param.5 = slidingSlicer
startSearchAlg.param.6 = disjointSlicer
startSearchAlg.param.7 = <w>

Fig. 4. SMF configuration file for VariableQueryAlgorithm algorithm

0.0 12.618263 12.764268 16.291042

0 18 22 99
127 127 127 127

Find similar subsequences Find similar subsequences Find similar subsequences Find similar subsequences

Fig. 5. Demonstration of VariableQueryAlgorithm: http://mufin.fi.muni.cz/subseq/
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by an action called namedInstanceAdd which creates an instance slidingSlicer
of class smf .modules.slicer.SlidingSlicer (with parameter w); the disjoint
slicer is created accordingly. Then, the instance of distance index is created; it
is a self-standing algoritm, namely a metric index M-Index [4] (we assume that
the instance mIndex has been already created). In this example, the sequence
storage is instantiated as a simple memory storage (seqStorage).

Finally, the actual VariableQueryAlgorithm is started passing the created
module instances as parameters to the skeleton. The param. 2 of this action spec-
ifies that this particular algorithm instance requires sequences of floating point
numbers and will compare them by Euclidean distance. Such SMF configuration
files are processed directly by the MESSIF framework that enables creation of
such algorithm and its efficient management.

This algorithm is demonstrated by a publicly available demo on a set of real
number sequences compared by Ly distance (http://mufin.fi.muni.cz/subseq/).
Figure [l shows screenshot of the GUI of this demo: The user can specify a
subsequence (offset and width) of the query sequence and the most similar sub-
sequences are located within the indexes set.

5 Conclusions and Future Work

The sequence data is all around us in various forms and extensive volumes. The
research in the area of subsequence matching has been very intensive, resulting
in many full or partial solutions in various sub-areas. In this work, we have
identified several sub-tasks that circulate over the field and are tackled within
various subsequence matching approaches and algorithms.

We present a generic subsequence matching framework (SMF) that brings
the option of choosing freely among the existing partial solutions and combin-
ing them in order to achieve ideal solutions for heterogeneous requirements of
different applications. Also, this framework overcomes the often mentioned im-
plementation bias present in the field and it enables a straightforward utilization
of techniques from different areas, for instance advanced metric indexes. We de-
scribe SMF on conceptual and implementation levels and present an example
of a design and realization of subsequence algorithm with the aid of SMF. The
SMF is available under GPL license at http://mufin.fi.muni.cz/smf/.

The architecture of the framework is strictly modular and thus one of natural
directions of future development is implementation of other modules. Also, we
will develop SMF according to requirements emerging from continuous research
streams that utilize SMF. Finally and most importantly, we would like to con-
tribute to the efficiency of the subsequence matching systems by involvement of
advanced metric indexes. We believe in a positive impact of such cooperation of
these two research fields that were so far evolving relatively separately.
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