Towards peer-to-peer scheduling architecture for
the Czech National Grid

S.To6th, M.Ruda, L.Matyska

CESNET, z.s.p.o., Prague, Czech Republic

Abstract
The Czech National Grid Infrastructure MetaCentrum has been using
a central scheduler infrastructure for approximately the past 10 years.
This facilitated simple administration and direct support for large jobs
running across several geographical sites. The knowledge of complete
state allowed the scheduler to provide high quality decision making
incorporating features like fairshare. On the other hand, this central
setup created a single point of failure issue and also reached its scala-
bility limits.
In this paper we describe our work towards a new distributed architec-
ture that maintains high scheduling quality while solving most of the
single server issues.
Our new distributed architecture provides both local autonomy and
high scheduling quality. Users can still submit jobs locally even when
cross-site connectivity is lost. Individual schedulers work primary with
their local server but still maintain global state, that allows them to
mimic centralised scheduling features. The architecture still supports
central accounting and fairshare across the entire grid.
Implementation is based on the open-source Torque batch system,
which replaced the previous commercial PBSPro central server instal-
lation. Torque provides a similar codebase as it has a common ancestor
with PBSPro in OpenPBS. Torque therefore provides familiar interface
for both users and developers.

1 Czech national grid

The Czech national grid infrastructure is composed from mostly computa-
tional resources. These are usually clusters, that are spread across the country,
concentrated in several geographical sites (figure 1).

MetaCentrum is currently experiencing rapid growth of both computational
resources and user base. This was the prime reason for the new distributed
architecture proposal.

The expected grow is mostly due to new connected sites. New sites not
only increase the instability of the network but new site owners expect certain
amount of autonomy from MetaCentrum. Unavailability of the local cluster
when connectivity to the central server is lost is usually unacceptable.

Currently! the Czech national grid includes approximately 1500 CPUs with

INovember 2010

Figure 1: Metacentrum sites

clusters in four cities in 7 total sites. The grid is currently processing over 100
000 jobs each month.

2 Central server architecture

Previously used architecture consisted of a single server installation coupled
with a scheduler (figure 2). The system was based on a commercial PBSPro
batch system which was modified to facilitate the needs of the Czech national
grid.

One central server allows the scheduler to work with full state information
from the entire grid. This provides the scheduler with enough information to
make informed decision like keeping empty space for starving jobs. Because
the scheduler has complete control over the entire grid, it is simple to provide
features like fairshare or multi-site jobs with additional effort.

2.1 MetaCentrum PBSPro improvements

The original PBSPro system was greatly enhanced to handle the entire grid
and its requirements. Many stability improvements were implemented to limit
systems the downtime. The original scheduler was enhanced to support all fea-
tures required in the Czech national grid.

Detailed analysis of the original system and the possibilities for the transfor-
mation into a P2P distributed architecture were discussed in [3] and [4]. We will
be discussing the specifics of features ported for the intermediate architecture
and the current state of the implementation.

<«

Communication

..

...............................

Figure 2: Central server architecture

Configurable support for starving jobs Starving job support was rewrit-
ten, server now supports setting a time limit on each queue. If any job is waiting
in the queue longer than the specified time limit, it is considered starving. Starv-
ing jobs are scheduled onto all nodes (both free and occupied) which are then
reserved and cannot be accessed by any non-starving jobs (until the starving job
is executed).

Job priorities still take precedence over starving state and therefore a starving
job will not be scheduled before a non-starving job with higher priority.

Support for external resources Very dynamically changing resources (like
number of software licences, or current disk space) are kept separate from stan-
dard resources counted on the server. Special dacmon (pbs cache) maintains
these values and allows fast readout of current values. Scheduler is using these
external resources in conjunction with standard resources obtained from the
server.

Nodes dedicated to queues Queues can be configured to imply certain prop-
erties and therefore only access a specific subset of the computation nodes. Vice
versa nodes can be configured to be dedicated to a certain queue.

Kerberos support Kerberos support was included into the system, upon sub-
mit, the users credentials are transferred to the server and upon execution, all
job parts have the correct credentials assigned and maintained.

Virtual machines System was enhanced with virtual machine support. Phys-
ical machines now host two virtual machines. One of machine represents a high

priority machine the second one represents a low priority. Access to these ma-
chines is divided using queues. This allows the system to provide preemptible
and backfill queues [1, 2].

Automatic node upgrade If a computational node detects a new version of
its binary, it will restart at the earliest possible time.

2.2 Disadvantages

Single central server implies several problems. Central solution always intro-
duces a single point of failure issue. If a server outage occurs, the entire grid is
offline. If a scheduler outage occurs, no new jobs can be run.

Despite the fact, that the systems stability was improved significantly, net-
work outages still can’t be evaded. Each outage cuts out a portion of the grid
from the server, disallowing the affected users to submit new jobs and the sched-
uler to run jobs on the affected site. Because the Czech national grid covers a
large geographic area, the batch system has to work with increased timeouts.
Each network outage therefore also slows down the server, which has to wait for
each of the affected nodes (until they time out).

The scheduler itself was already reaching its scalability limits concerning
amount of jobs scheduled and with the expected increase of sites and total job
count, we need to create a replacement.

3 Distributed architecture

The new architecture was designed to overcome limitations of the central
server setup. Detailed analysis was presented in the technical report [3], we will
therefore only concentrate on the current state and its evaluation. But because
the central server architecture offered us great scheduling quality, our primary
goal was to maintain this high scheduling quality.

Features that require complete cluster state had to be mimicked in the dis-
tributed environment. For example fairshare information requires complete clus-
ter state to compute, therefore we have to either use a slightly outdated fairshare
information that will be calculated externally, or ignore the imprecision caused
by the distributed architecture.

Features that were provided by the concurrent access to the whole grid have
to be reimplemented with the distributed architecture in mind. For example
cross-site jobs will now require cooperation of several servers. The same applies
for running a job on a different site than the one it was submitted onto.

The distributed version provides a natural solution to the single point of
failure issue, together with improved scalability. This is critical for coping with
the rapid growth of computational capacity and job count.

3.1 Distributed P2P architecture

The proposed architecture (figure 3) divides the grid into a set of semi-
independent sites, each with its own scheduler and server and each maintaining
its set of computational nodes. Each scheduler only schedules the local servers
jobs. If a problem arises that cannot be solved locally, the schedulers will coop-
erate to solve the issue.

This includes various scenarios from local server saturation (no free compu-
tational nodes), to handling requests for features that are not provided by local
computational nodes, or running multi-site jobs.

s.t—e1 s.;ez :
<_s' - - Local server communication

/ ¢ N e — >
: P2P scheduler communication

I Server 1 Server 2]

\ :;-'éi-e s l /
\ Server 3 /
AN i i s
~ e

Figure 3: P2P Architecture

This architecture is targeting the scalability of hundreds upto thousands of
sites. This relies on the assumption that only a small fraction of jobs will require
the cooperation of many sites/schedulers.

3.2 Intermediate M:N architecture

The proposed architecture is a very big architectural jump from the original
single central server setup. To solve the immediate needs of the Czech national
grid, we proposed a new intermediate architecture (figure 4).

The intermediate architecture, doesn’t separate the sites from each other
and instead employs a full M:N communication network between schedulers and
servers where each scheduler communicates with each server and vice-versa. This
allows the schedulers to maintain a solid overview of the global grid state while
still scheduling only a subset of the total jobs amount at a time. Network outages

..

Scheduler 1 Scheduler 2

Scheduler, Server
communication
A ¢
\ 4
Server 1 Server 2

Server 3

Scheduler 3

Figure 4: M:N Architecture

only affect cross-site jobs because each server is still fully functional when cross-
site functionality is lost and can still manage its own local computational nodes.

4 Transformation towards P2P scheduling architecture

Together with the architecture change, we also decided to change the batch
system. PBSPro is a commercial software licensed per CPU. This is something
that really cuts into the cost of adding new clusters into the grid.

4.1 Torque

After evaluating several batch systems, we decided to select Torque batch
system [7]. One of the major reason why Torque was selected is the fact, that
Torque is mostly compatible with PBSPro.

Torque shares a common ancestor with PBSPro [6], both these batch systems
are based from OpenPBS [8]. This ensures that both internal and external
interfaces are very similar, although the projects did diverge a lot since forked.

Torque is a lively project with patches continuously being submitted from
various sources. It is also the most commonly supported backend for grid inter-
faces like glite [11] and globus [10].

We based our work on top of Torques FIFO scheduler, instead of using an
external scheduler like Maui [5]. The provided FIFO scheduler has a very simple

and clean codebase, which allowed us to quite rapidly port custom extensions
from PBSPro into Torque. The simple codebase allows us to implement even
very experimental features like the distributed architecture.

4.2 Prototype

The first action towards the optimal architecture implementation was a pro-
totype of the M:N architecture based on Torque. Server daemon was modified
to wake up all schedulers and scheduler daemon was enhanced with the ability
to schedule multiple server sequentially.

To improve the initial performance and also to test the suitability of simi-
lar modifications we implemented a mutual exclusion protocol, that allows the
scheduler to claim the server for a short period of time. This exclusivity is only
enforced for job modifying commands. User tool requests for job modifications
are processed immediately after the server is released.

The schedulers logic was completely rewritten to support server state caching,
job moving and trivial resource counting (which wasn’t present in the original

FIFO logic).

4.3 Evaluation

After the first prototype was implemented we needed to evaluate the per-
formance of this prototype. This included both the Torque batch system per-
formance (specifically in comparison with PBSPro) and the impact of the new
architecture implementation.

To evaluate the performance a testing platform with 205 light virtual ma-
chines (5 servers, 200 computational nodes) based on Linux containers [9]. Each
measurement consisted of 5000 empty /bin/true jobs being submitted into this
virtual cluster.

These tests gave us a very good overview of the initial scalability.

We were primarily concerned with the total time it took to execute all 5000
jobs, but we were also interested in the progress (figure 5). The progress graphs
visualise the amount of jobs submitted into the cluster, waiting in queues, run-
ning and jobs already finished. The graphs also map the run traffic (amount of
run requests), the move traffic (amount of move requests) and state overview of
the cluster nodes (free/busy count).

Progress graphs were very valuable for tweaking Torque settings like sched-
uler wakeup frequency.

4.4 Distributed architecture impact

Multiple servers per scheduler (figure 6) have almost zero speed impact.
Schedulers work in an almost completely synchronous manner, waiting for each
run requested to be either confirmed or rejected. Therefore processing equivalent
amount of jobs (split between servers) will result in almost identical time.

JobCount

s000

4000

3000

2000

1000

o

T
Known jobs (jobs that ent
In system (jobs
‘Queued obs ¥
e (obs

)
T

MoveTrafic RunTralh

i ‘mh!\ H“‘ 1l \‘

[l

u HIIHII i

I
m HH\ \‘\ -HI!

HI\ \I\Il\ IRl ET R \‘

Wl
Tk ll\‘\l‘lH |I\‘\H iif \|\leli

| ‘ H \
\H‘I\m IHU [EA L U‘\'H”m‘ul

Figure 5: Measurement of job processing

time (5)

e

time (5)

1100

1050

1000

900

850

B

1 s0rv 5000 jobs

2 s0rv 2x2500 jobs

5 serv 5x1000 jobs.

1 sched

3 sched, locking 3 sched, nolocking 5 sched, locking 5 sched, nolocking

Figure 7: Multiple schedulers
performance impact

Figure 6: Multiple servers
performance impact

Adding multiple schedulers (figure 7) to one server causes overhead on the
server (more status requests). While the schedulers work in fully synchronous
matter the server is very asynchronous, using callbacks and delayed tasks. For-
tunately the overhead added by one scheduler is quite reasonable, approximately

1%-3%.

5 Further feature enhancements

With a functional prototype and a good overview of the intermediate archi-
tecture scalability and behaviour, we continued with porting of all PBSPro im-
provements into Torque. This also included features that were missing in Torque
itself (implemented in PBSPro after the software was forked from OpenPBS).

Multi node jobs limitation Nodes can be configured not to accept jobs
requesting multiple nodes. Scheduler will skip such nodes when scheduling multi-
site jobs.

Resource semantics Torque batch system didn’t contain internal support for
resource counting or scheduling. The only supported resource semantics were
processes and resource enforcement on the computational node using the (rlimit)
per-process system limits. Both server and scheduler were enhanced with full
generic resource support. Server has the ability to read reported resources from
nodes, store them and verify each run request against these resources. For
convenience the reported resources can also be mapped to a different name on
the server.

Beyond the already supported resources, a generic counted resource can be
specified on the nodes and the server will keep track of this resources usage.

Virtual clusters and VPN Full support for features already provided by PB-
SPro was reimplemented into Torque including support for virtual machines [1]
and virtual clusters [2]. Active development of new features is now carried on
top of Torque.

One of the new features already developed on top of Torque is support of
on-demand virtual clusters. The grid now provides an infrastructure of physical
machines and virtual machine images (described using provided features). Upon
user request request, virtual machine images are selected (fitting the specification
provided by the user), installed and executed on the physical machines selected
by the scheduler.

If desired a virtual private network can be created between these machines
(the machines can also be connected to an already existing VPN).

6 Conclusion

We have designed a new distributed P2P batch system architecture, which
will be used as the future base of job scheduling in MetaCentrum.

We implemented an intermediate distributed architecture to satisfy the im-
mediate needs of MetaCentrum as a temporary solution for quick deployment in
the current MetaCentrum, that would still solve scalability and stability prob-
lems of the original PBSPro installation.

As presented this solution provides solid scalability and will even allow con-
nection of new sites into MetaCentrum.

Deploying this solution on MetaCentrum will give us valuable feedback from
real usage that will be extremely useful for the fully distributed P2P architecture.

References

1. Ruda, M.; Denemark, J.; Matyska, L.. Scheduling Virtual Grids: the Magrathea
System, Second International Workshop on Virtualization Technology in Dis-

10.

11.

tributed Computing, USA, ACM digital library, 2007. p. 1-7. 2007, Reno, USA.
Miroslav Ruda, Zdengk Sustr, Jif{ Sitera, David Antos, Lukas Hejtmének, Petr
Holub, Milos Mulag¢. Virtual Clusters as a New Service of MetaCentrum, the Czech
NGI. Cracow Grid Workshop 09, 2009. Pages 66-71.

Miroslav Ruda, Simon Téth. Transition to Inter-Cluster Scheduling Architecture
in MetaCentrum. CESNET technical report 21,/2009.

Ludék Matyska, Miroslav Ruda, Simon Téth. Peer-to-peer cooperative scheduling
architecture for National Grid Infrastructure. International Symposium on Grid
Computing (ISGC), March 2010, Taiwan.

D. Jackson, Q. Snell, and M. Clement. Core Algorithms of the Maui Scheduler. In
Proceedings of Tth Workshop on Job Scheduling Strategies for Parallel Processing,
2001.

The Portable Batch System. http://www.pbspro.com

Torque Resource Manager. http://wuw.clusterresources.com/products/
torque-resource-manager . php.

Henderson, R. and D. Tweten. Portable Batch System: External reference Speci-
fication. NASA, Ames Research Center, 1996.

Simon Toth. Vykonnostni méfeni davkového systému Torque http:
//www.metacentrum.cz/export/sites/metacentrum/downloads/techreports/
benchmarker.pdf

I. Foster. Globus Toolkit Version 4: Software for Service-Oriented Systems. In
IFIP International Conference on Network and Parallel Computing, Springer-
Verlag LNCS 3779, pp 2-13, 2006.

Laure, E., F. Hemmer, F. Prelz, S. Beco, S. Fisher, M. Livny, L. Guy, M. Barroso,
P. Buncic, P. Kunszt, A. Di Meglio, A. Aimar, A. Edlund, D. Groep, F. Pacini,
M. Sgaravatto, and O. Mulmo. Middleware for the next generation Grid infras-
tructure. In: Computing in High Energy Physics and Nuclear Physics (CHEP
2004,).

