Masarykova univerzita

Výpis publikací

česky | in English

Filtrování publikací

    2023

    1. HASIL, Petr a Michal VESELÝ. Limit periodic perturbations of difference systems with coefficients from commutative groups. Journal of Difference Equations and Applications. Taylor & Francis, 2023, roč. 29, č. 1, s. 43-66. ISSN 1023-6198. doi:10.1080/10236198.2022.2159818.
    2. HASIL, Petr a Michal VESELÝ. Modification of adapted Riccati equation and oscillation of linear and half-linear difference equations. Applied Mathematics Letters. Elsevier, 2023, roč. 141, July 2023, s. 1-8. ISSN 0893-9659. doi:10.1016/j.aml.2023.108632.
    3. HASIL, Petr a Michal VESELÝ. Oscillation and nonoscillation of perturbed nonlinear equations with p-Laplacian. Mathematische Nachrichten. Wiley-VCH Verlag GmbH, 2023, roč. 296, č. 7, s. 2809-2837. ISSN 0025-584X. doi:10.1002/mana.202100169.

    2022

    1. HASIL, Petr a Michal VESELÝ. Conditionally oscillatory linear differential equations with coefficients containing powers of natural logarithm. AIMS Mathematics. American Institute of Mathematical Sciences, 2022, roč. 7, č. 6, s. 10681-10699. ISSN 2473-6988. doi:10.3934/math.2022596.
    2. HASIL, Petr, Michal POSPÍŠIL, Jiřina ŠIŠOLÁKOVÁ a Michal VESELÝ. Non-oscillation criterion for Euler type half-linear difference equations with consequences in linear case. Acta Mathematica Hungarica. Springer, 2022, roč. 166, č. 2, s. 624 - 649. ISSN 0236-5294. doi:10.1007/s10474-022-01218-1.
    3. HASIL, Petr a Michal VESELÝ. Oscillation of linear and half-linear differential equations via generalized Riccati technique. Revista Matemática Complutense. Springer-Verlag Italia s.r.l., 2022, roč. 35, č. 3, s. 835-849. ISSN 1139-1138. doi:10.1007/s13163-021-00407-w.
    4. HASIL, Petr, Jiřina ŠIŠOLÁKOVÁ a Michal VESELÝ. Oscillation of modified Euler type half-linear differential equations via averaging technique. Electronic Journal of Differential Equations. Texas State University, 2022, roč. 2022, č. 41, s. 1-16. ISSN 1072-6691.

    2021

    1. HASIL, Petr a Michal VESELÝ. New conditionally oscillatory class of equations with coefficients containing slowly varying and periodic functions. Journal of Mathematical Analysis and Applications. San Diego: ACADEMIC PRESS INC ELSEVIER SCIENCE, 2021, roč. 494, č. 1, s. 1-22. ISSN 0022-247X. doi:10.1016/j.jmaa.2020.124585.
    2. HASIL, Petr, Jozef KISEL'ÁK, Michal POSPÍŠIL a Michal VESELÝ. Nonoscillation of half-linear dynamic equations on time scales. Mathematical Methods in the Applied Sciences. Wiley, 2021, roč. 44, č. 11, s. 8775-8797. ISSN 0170-4214. doi:10.1002/mma.7304.
    3. HASIL, Petr a Michal VESELÝ. Positivity of solutions of adapted generalized Riccati equation with consequences in oscillation theory. Applied Mathematics Letters. Elsevier Ltd., 2021, roč. 117, July, s. "107118", 7 s. ISSN 0893-9659. doi:10.1016/j.aml.2021.107118.
    4. HASIL, Petr a Michal VESELÝ. Riccati technique and oscillation of linear second-order difference equations. Archiv der Mathematik. Springer Nature Switzerland AG, 2021, roč. 117, č. 6, s. 657-669. ISSN 0003-889X. doi:10.1007/s00013-021-01649-2.

    2020

    1. HASIL, Petr, Jaroslav JAROŠ a Michal VESELÝ. Riccati technique and oscillation constant for modified Euler type half-linear equations. Publicationes Mathematicae Debrecen. Debrecen: Kossuth Lajos Tudományegyetem, 2020, roč. 97, 1-2, s. 117-147. ISSN 0033-3883. doi:10.5486/PMD.2020.8739.
    2. FUJIMOTO, Kodai, Petr HASIL a Michal VESELÝ. Riccati transformation and non-oscillation criterion for linear difference equations. Proceedings of the American Mathematical Society. Providence: American Mathematical Society, 2020, roč. 148, č. 10, s. 4319-4332. ISSN 0002-9939. doi:10.1090/proc/15072.
    3. HASIL, Petr, Kamila HASILOVÁ a Jiřina ŠIŠOLÁKOVÁ. Sbírka příkladů o nekonečných řadách. 1., elektronické vyd. Brno: Masarykova univerzita, 2020. Elportál. ISBN 978-80-280-0006-6.
    4. HASIL, Petr, Kamila HASILOVÁ a Jiřina ŠIŠOLÁKOVÁ. Sbírka příkladů o nekonečných řadách. 1. vyd. Brno: Masarykova univerzita, 2020. Elportál. ISBN 978-80-280-0006-6.

    2019

    1. HASIL, Petr a Michal VESELÝ. Asymptotically almost periodic solutions of limit periodic difference systems with coefficients from commutative groups. Topological Methods in Nonlinear Analysis. TORUN: JULIUSZ SCHAUDER CTR NONLINEAR STUDIES, 2019, roč. 54, č. 2, s. 515-535. ISSN 1230-3429. doi:10.12775/TMNA.2019.051.
    2. HASIL, Petr, Jiřina ŠIŠOLÁKOVÁ a Michal VESELÝ. Averaging technique and oscillation criterion for linear and half-linear equations. Applied Mathematics Letters. Oxford: PERGAMON-ELSEVIER SCIENCE LTD, 2019, roč. 92, č. 2019, s. 62-69. ISSN 0893-9659. doi:10.1016/j.aml.2019.01.013.
    3. HASIL, Petr, Kamila HASILOVÁ a Jiřina ŠIŠOLÁKOVÁ. Collection of examples about infinite series. Masarykova univerzita, 2019. 190 s.
    4. DOŠLÁ, Zuzana, Petr HASIL, Serena MATUCCI a Michal VESELÝ. Euler type linear and half-linear differential equations and their non-oscillation in the critical oscillation case. Journal of Inequalities and Applications. 4 CRINAN ST, LONDON, N1 9XW, ENGLAND: SPRINGEROPEN, 2019, roč. 2019, č. 189, s. 1-30. ISSN 1029-242X. doi:10.1186/s13660-019-2137-0.
    5. HASIL, Petr a Michal VESELÝ. Modified Prüfer angle and conditional oscillation of perturbed linear and half-linear differential equations. Applied Mathematics and Computation. New York: ELSEVIER SCIENCE INC, 2019, roč. 361, NOV 15 2019, s. 788-809. ISSN 0096-3003. doi:10.1016/j.amc.2019.06.027.
    6. HASIL, Petr, Jakub JURÁNEK a Michal VESELÝ. Non-oscillation of half-linear difference equations with asymptotically periodic coefficients. Acta Mathematica Hungarica. VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECH: SPRINGER, 2019, roč. 159, č. 1, s. 323-348. ISSN 0236-5294. doi:10.1007/s10474-019-00940-7.
    7. HASIL, Petr a Michal VESELÝ. Oscillation result for half-linear dynamic equations on timescales and its consequences. Mathematical Methods in the Applied Sciences. Hoboken: Wiley, 2019, roč. 42, č. 6, s. 1921-1940. ISSN 0170-4214. doi:10.1002/mma.5485.
    8. HASIL, Petr a Michal VESELÝ. Prüfer angle and non-oscillation of linear equations with quasiperiodic data. MONATSHEFTE FUR MATHEMATIK. WIEN: SPRINGER WIEN, 2019, roč. 189, č. 1, s. 101-124. ISSN 0026-9255. doi:10.1007/s00605-018-1232-5.
    9. HASIL, Petr, Kamila HASILOVÁ a Jiřina ŠIŠOLÁKOVÁ. Sbírka příkladů o nekonečných řadách. Masarykova univerzita, 2019. 192 s.

    2018

    1. HASIL, Petr, Jakub JURÁNEK a Michal VESELÝ. Adapted Riccati technique and non-oscillation of linear and half-linear equations. Applied Mathematics Letters. KIDLINGTON, OXFORD OX5 1GB, ENGLAND: PERGAMON-ELSEVIER SCIENCE LTD, 2018, roč. 82, August 2018, s. 98-105. ISSN 0893-9659. doi:10.1016/j.aml.2018.03.003.
    2. HASIL, Petr a Michal VESELÝ. Oscillation and non-oscillation of half-linear differential equations with coefficients determined by functions having mean values. Open Mathematics. WARSAW, POLAND: De Gruyter, 2018, roč. 16, č. 1, s. 507-521. ISSN 2391-5455. doi:10.1515/math-2018-0047.
    3. HASIL, Petr a Michal VESELÝ. Oscillation and non-oscillation results for solutions of perturbed half-linear equations. Mathematical Methods in the Applied Sciences. 111 RIVER ST, HOBOKEN 07030-5774: Wiley, 2018, roč. 41, č. 9, s. 3246-3269. ISSN 0170-4214. doi:10.1002/mma.4813.
    4. HASIL, Petr a Michal VESELÝ. Oscillatory and non-oscillatory solutions of dynamic equations with bounded coefficients. Electronic Journal of Differential Equations. San Marcos, TX 78666, USA: Texas State University, 2018, roč. 2018, č. 24, s. "nestránkováno", 22 s. ISSN 1072-6691.

    2017

    1. HASIL, Petr a Michal VESELÝ. Oscillation and non-oscillation criteria for linear and half-linear difference equations. Journal of Mathematical Analysis and Applications. SAN DIEGO: ACADEMIC PRESS INC ELSEVIER SCIENCE, 2017, roč. 452, č. 1, s. 401-428. ISSN 0022-247X. doi:10.1016/j.jmaa.2017.03.012.
    2. HASIL, Petr a Michal VESELÝ. Solution spaces of homogeneous linear difference systems with coefficient matrices from commutative groups. Journal of Difference Equations and Applications. Abingdon: Taylor and Francis, 2017, roč. 23, č. 8, s. 1324-1353. ISSN 1023-6198. doi:10.1080/10236198.2017.1326912.

    2016

    1. HASIL, Petr a Michal VESELÝ. Non-oscillation of periodic half-linear equations in the critical case. Electronic Journal of Differential Equations. San Marcos, TX 78666, USA: Texas State University, 2016, roč. 2016, May, s. "nestrankovano", 12 s. ISSN 1072-6691.
    2. HASIL, Petr a Michal VESELÝ. Oscillation and non-oscillation criterion for Riemann-Weber type half-linear differential equations. Electronic Journal of Qualitative Theory of Differential Equations. Maďarsko: Electronic Journal of Qualitative Theory of Differential Equations, 2016, roč. 2016, č. 59, s. "nestrankovano", 22 s. ISSN 1417-3875. doi:10.14232/ejqtde.2016.1.59.
    3. HASIL, Petr a Petr ZEMÁNEK. Sbírka řešených příkladů z matematické analýzy II. Masarykova univerzita, 2016.
    4. VESELÝ, Michal a Petr HASIL. Values of limit periodic sequences and functions. Mathematica Slovaca. 2016, roč. 66, č. 1, s. 43-62. ISSN 0139-9918. doi:10.1515/ms-2015-0114.

    2015

    1. HASIL, Petr a Jiří VÍTOVEC. Conditional oscillation of half-linear Euler-type dynamic equations on time scales. Electronic Journal of Qualitative Theory of Differential Equations. Szeged: University of Szeged, 2015, roč. 2015, č. 6, s. 1-24. ISSN 1417-3875. doi:10.14232/ejqtde.2015.1.6.
    2. VESELÝ, Michal a Petr HASIL. Limit periodic homogeneous linear difference systems. Applied Mathematics and Computation. Elsevier, 2015, roč. 265, August, s. 958-972. ISSN 0096-3003. doi:10.1016/j.amc.2015.06.008.
    3. VESELÝ, Michal a Petr HASIL. Non-oscillation of half-linear differential equations with periodic coefficients. Electronic Journal of Qualitative Theory of Differential Equations. Electronic Journal of Qualitative Theory of Differential Equations, 2015, roč. 2015, č. 1, s. 1-21. ISSN 1417-3875. doi:10.14232/ejqtde.2015.1.1.
    4. HASIL, Petr a Michal VESELÝ. Non-oscillation of perturbed half-linear differential equations with sums of periodic coefficients. Advances in Difference Equations. Springer, 2015, roč. 2015, June, s. "nestránkováno", 17 s. ISSN 1687-1847. doi:10.1186/s13662-015-0533-4.
    5. VESELÝ, Michal a Petr HASIL. Oscillation constant for modified Euler type half-linear equations. Electronic Journal of Differential Equations. San Marcos: State University and the University of North Texas, 2015, roč. 2015, August, s. "nestránkováno", 14 s. ISSN 1072-6691.
    6. VESELÝ, Michal a Petr HASIL. Oscillation constants for half-linear difference equations with coefficients having mean values. Advances in Difference Equations. Springer, 2015, roč. 2015, July, s. "nestránkováno", 18 s. ISSN 1687-1847. doi:10.1186/s13662-015-0544-1.

    2014

    1. HASIL, Petr, Robert MAŘÍK a Michal VESELÝ. Conditional oscillation of half-linear differential equations with coefficients having mean values. Abstract and Applied Analysis. USA: Hindawi Publishing Corporation, 2014, roč. 2014, č. 258159, s. 1-14. ISSN 1085-3375. doi:10.1155/2014/258159.
    2. VESELÝ, Michal a Petr HASIL. Conditional oscillation of Riemann-Weber half-linear differential equations with asymptotically almost periodic coefficients. Studia Scientiarum Mathematicarum Hungarica. 2014, roč. 51, č. 3, s. 303-321. ISSN 0081-6906. doi:10.1556/SScMath.51.2014.3.1283.
    3. HASIL, Petr a Michal VESELÝ. Limit periodic linear difference systems with coefficient matrices from commutative groups. Electronic Journal of Qualitative Theory of Differential Equations. Maďarsko: Electronic Journal of Qualitative Theory of Differential Equations, 2014, roč. 2014, č. 23, s. 1-25. ISSN 1417-3875.

    2013

    1. VESELÝ, Michal a Petr HASIL. Oscillation and non-oscillation of asymptotically almost periodic half-linear difference equations. Abstract and Applied Analysis. U. S. A.: Hindawi Publishing Corporation, 2013, roč. 2013, č. 432936, s. 1-12. ISSN 1085-3375. doi:10.1155/2013/432936.
    2. HASIL, Petr a Michal VESELÝ. Oscillation of half-linear differential equations with asymptotically almost periodic coefficients. Advances in Difference Equations. U. S. A.: Springer, 2013, roč. 2013, č. 122, s. 1-15. ISSN 1687-1847. doi:10.1186/1687-1847-2013-122.

    2012

    1. HASIL, Petr a Michal VESELÝ. Almost periodic transformable difference systems. Applied Mathematics and Computation. Spojené státy americké: Elsevier, 2012, roč. 218, č. 9, s. 5562-5579. ISSN 0096-3003. doi:10.1016/j.amc.2011.11.050.
    2. HASIL, Petr a Michal VESELÝ. Critical oscillation constant for difference equations with almost periodic coefficients. Abstract and Applied Analysis. New York: Hindawi Publishing Corporation, 2012, roč. 2012, č. 471435, s. 1-19. ISSN 1085-3375. doi:10.1155/2012/471435.
    3. VESELÝ, Michal a Petr HASIL. Criticality of one term 2n-order self-adjoined differential equations. Electronic Journal of Qualitative Theory of Differential Equations. Szeged: Bolyai Institute, University of Szeged, 2012, roč. 2012, č. 18, s. 1-12. ISSN 1417-3875.
    4. ZEMÁNEK, Petr a Petr HASIL. Friedrichs extension of operators defined by even order Sturm-Liouville equations on time scales. Applied Mathematics and Computation. Spojené státy americké: Elsevier, 2012, roč. 218, č. 22, s. 10829‑10842, 14 s. ISSN 0096-3003. doi:10.1016/j.amc.2012.04.027.
    5. ZEMÁNEK, Petr a Petr HASIL. Sbírka řešených příkladů z matematické analýzy I. 3., aktual. vyd. Brno: Masarykova univerzita, 2012. Elportál. ISBN 978-80-210-5882-8.

    2011

    1. HASIL, Petr. Conjugacy of self-adjoint difference equations of even order. Abstr. Appl. Anal. Hindawi Pub. Corp., 2011, roč. 2011, č. 814962, s. 1-16. ISSN 1085-3375.
    2. HASIL, Petr. Criterion of p-criticality for one term 2n-order difference operators. Archivum Mathematicum (Brno). Masarykova univerzita, 2011, roč. 47, č. 2, s. 99-109. ISSN 0044-8753.
    3. DOŠLÝ, Ondřej a Petr HASIL. Critical higher order Sturm-Liouville difference operators. J. Difference Equ. Appl. 2011, roč. 17, č. 9, s. 1351-1363. ISSN 1023-6198.
    4. DOŠLÝ, Ondřej a Petr HASIL. Critical oscillation constant for half-linear differential equations with periodic coefficients. Annal. Mat. Pura Appl. 2011, roč. 190, č. 3, s. 395-408. ISSN 0373-3114.
    5. HASIL, Petr a Petr ZEMÁNEK. Critical second order operators on time scales. Discrete and Continuous Dynamical Systems. Springfield, Missouri: AIMS (American Institute of Mathematical Sciences), 2011, roč. 31, č. 2011, s. 653-659. ISSN 1078-0947.

    2010

    1. ZEMÁNEK, Petr a Petr HASIL. Sbírka řešených příkladů z matematické analýzy I. 2., aktual. vyd. Brno: Masarykova univerzita, 2010. Elportál. ISSN 1802-128X.
    2. ZEMÁNEK, Petr a Petr HASIL. Sbírka řešených příkladů z matematické analýzy I. 1. vyd. Brno: Masarykova univerzita, 2010. Elportál. ISSN 1802-128X.

    2009

    1. DOŠLÝ, Ondřej a Petr HASIL. Friedrichs extension of operators defined by symmetric banded matrices. Linear Algebra Appl. 2009, roč. 430, 8-9, s. 1966-1975, 12 s. ISSN 0024-3795.
    2. HASIL, Petr. On positivity of the three term 2n-order difference operators. Studies of the University of Žilina, Mathematical Series. 2009, roč. 23, č. 1, 8 s. ISSN 1336-149X.

    2008

    1. HASIL, Petr. Conditional oscillation of half-linear differential equations with periodic coefficients. Arch. Math. 2008, roč. 44, č. 2, s. 119-131. ISSN 0044-8753.
Zobrazit podrobně
Zobrazeno: 11. 12. 2023 07:42