Masarykova univerzita

Výpis publikací

česky | in English

Filtrování publikací

    2015

    1. BARTUŠEK, Miroslav. Monotonicity properties of oscillatory solutions of two-dimensional systems of differential equations. Electronic Journal of Differential Equations. 2015, roč. 2015, č. 225, s. 1-13. ISSN 1072-6691.

    2014

    1. BARTUŠEK, Miroslav a Zuzana DOŠLÁ. Oscillation of fourth order sub-linear differential equations. Appl. Math. Letters. Pergamon Press, 2014, roč. 36, OCTOBER, s. 36-39. ISSN 0893-9659. Dostupné z: https://dx.doi.org/10.1016/j.aml.2014.05.006.

    2013

    1. BARTUŠEK, Miroslav a Zuzana DOŠLÁ. Asymptotic problems for fourth-order nonlinear differential equations. Boundary Value Problems. USA: Hindawi Publishing Corporation, 2013, roč. 2013, č. 89, s. 1-15. ISSN 1687-2770. Dostupné z: https://dx.doi.org/10.1186/1687-2770-2013-89.
    2. BARTUŠEK, Miroslav a Chrysi G. KOKOLOGIANNAKI. Monotonicity properties of oscillatory solutions of differential equation (a(t)|y'|^(p-1)y'+f(t,y,y')=0. Archivum Mathematicum (Brno). Brno: Masarykova univerzita, 2013, roč. 49, č. 3, s. 199-207. ISSN 0044-8753. Dostupné z: https://dx.doi.org/10.5817/AM2013-3-199.

    2012

    1. BARTUŠEK, Miroslav, Mariella CECCHI, Zuzana DOŠLÁ a Mauro MARINI. Asymptotics for higher order differential equations with a middle term. Journal of Mathematical Analysis and Applications. USA: Acad.Press, 2012, roč. 388, č. 2, s. 1130-1140. ISSN 0022-247X. Dostupné z: https://dx.doi.org/10.1016/j.jmaa.2011.10.059.

    2007

    1. BARTUŠEK, Miroslav. Oscillatory solutions of a system of differential equations. In Seminar of differential equations, Chattanooga state university. 2007.

    2002

    1. BARTUŠEK, Miroslav a Jan OSIČKA. Asymptotic behaviour of oscillatory solutions of a fourth-order nonlinear differential equation. Mathematica Bohemica. Praha: Matematický ústav AV ČR, 2002, roč. 127, č. 3, s. 385-396. ISSN 0862-7959.
    2. SOBALOVÁ, Monika. On oscillatory solutions of the fourth order differential equations with the middle term. Nonlinear Analysis TMA. Elsevier Science Ltd., 2002, roč. 47, č. 5, s. 3573-3578. ISSN 0362-546X.

    2001

    1. BARTUŠEK, Miroslav, Zuzana DOŠLÁ a John GRAEF. On the definitions of the nonlinear limit-point/limit-circle properties. Spoluautor:Graef,R.,John. Differential Equations and Dynamical Systems. 2001, roč. 9, č. 1, s. 49-61. ISSN 0971-3514.

    2000

    1. DOŠLÁ, Zuzana. On square integrable solutions of the third order linear differential equations. In Proceedings of the International Scientific Conference on Mathematics held in Herlany. Košice: Faculty of Elect.Eng.and Informatics, University of Technology, Košice, 2000, s. 68-72. ISBN 80-88922-15-1.
    2. BARTUŠEK, Miroslav. 0n oscillatory solutions of third order differential equation with quasiderivatives. In Electronic Journal of Differential Equations. Southwest Texas State University: Mississippi State University,Mississippi,USA, 2000, s. 1-11. ISSN1072-6691.

    1999

    1. BARTUŠEK, Miroslav. On existence of oscillatory solutions of n-th order differential equations with quasiderivatives. Archivum Mathematicum. Brno: Masaryk University, 1999, roč. 34, č. 1, s. 1-12. ISSN 0044-8753.

    1997

    1. BARTUŠEK, Miroslav. Asymtotic behaviour of oscillatory solutions of the n-th order differential equations with quasiderivatives. Czechoslovak Math. J. Praha, 1997, roč. 47, č. 122, s. 245-259. ISSN 0011-4642.
    2. BARTUŠEK, Miroslav. On the structure of oscillatory solutions of a third order differential equations. Archivum Mathematicum. Brno: MU Brno, 1997, roč. 33, č. 4, s. 323-334. ISSN 0044-8753.

    1996

    1. BARTUŠEK, Miroslav. Oscillatory criteria for nonlinear n-th order differential equations with quasiderivatives. Georgian Mathematical Journal. 1996, roč. 3, č. 4, s. 301-314. ISSN 1072-947X.

    1994

    1. BARTUŠEK, Miroslav a Zuzana DOŠLÁ. On Solutions of a Third Order Nonlinear Differential Equations. Nonlinear Analysis. 1994, roč. 23, č. 10, s. 1331-1343. ISSN 0362-546X.
Zobrazit podrobně
Zobrazeno: 14. 11. 2024 01:42