DOŠLÝ, Ondřej and Gabriella BOGNÁR. Minimal solution of a Riccati type differential equation. Publ. Math. Debrecen. Debrecen, 2009, vol. 74, 1-2, p. 159-169. ISSN 0033-3883.
DOŠLÝ, Ondřej. Oscillation theory of symplectic difference systems. In Advanced Studies in Pure Mathematics. Tokyo: American Mathematical Society, 2009, p. 53-62. ISBN 978-4-931469-49-5.
DOŠLÝ, Ondřej and Gabriella BOGNÁR. A remark on power comparison theorem for half-linear differential equations. Math. Bohem. 2008, vol. 133, No 2, p. 187-195. ISSN 0862-7959.
DOŠLÝ, Ondřej and Zuzana DOŠLÁ. Principal solution of half-linear differential equation: Limit and integral characterization. Electron. J. Qual. Theory Differential Equ. Szeged: Univ. Szeged, 2008, vol. 2008, No 10, p. 1-14. ISSN 1417-3875.
DOŠLÝ, Ondřej and Mehmet UNAL. Half-linear differential equations: Linearization technique and its application. J. Math. Anal. Appl. 2007, vol. 335, No 2, p. 450-460. ISSN 0022-247X.
DOŠLÁ, Zuzana, Mariella CECCHI and Mauro MARINI. Limit and integral properties of principal solutions for half-linear differential equations. Arch. Math. (Brno). 2007, vol. 43, No 1, p. 75-68, 14 pp. ISSN 0044-8753.
DOŠLÝ, Ondřej and Werner KRATZ. Oscillation theorems for symplectic difference systems. J. Difference Equ. Appl. 2007, vol. 13, No 7, p. 585-605. ISSN 1023-6198.
DOŠLÁ, Zuzana, Mariella CECCHI and Mauro MARINI. Corrigendum to ``Half-linear equations and characteristic properties of the principal solution''. J. Differential Equations. 2006, vol. 221, No 2, p. 272-274. ISSN 0022-0396.
DOŠLÝ, Ondřej and Zuzana PÁTÍKOVÁ. Hille-Wintner type comparison criteria for half-linear second order differential equations. Arch. Math. 2006, vol. 42, No 2, p. 185-194. ISSN 0044-8753.
DOŠLÁ, Zuzana, Mariella CECCHI, Mauro MARINI and Ivo VRKOČ. Integral conditions for nonoscillation of second order nonlinear differential equations. Nonlin. Anal. 2006, vol. 64, No 5, p. 1278-1289, 13 pp. ISSN 0362-546X.
DOŠLÝ, Ondřej and Alexander LOMTATIDZE. Oscillation and nonoscillation criteria for half-linear second order differential equations. Hiroshima Math. J. 2006, vol. 36, No 2, p. 203-219. ISSN 0018-2079.
DOŠLÝ, Ondřej. Differential equations with one-dimensional p-Laplacian, p>2 versus p<2. In Functional Spaces, Differential Operators and Nonlinear Analysis. Praha: MÚ AV ČR, 2005, p. 59-71. ISBN 80-85823-52-7.
DOŠLÁ, Zuzana, Mariella CECCHI and Mauro MARINI. Half-linear differential equations with oscillating coefficient. Differential Integral Equations. 2005, vol. 18, No 11, p. 1243-1256, 13 pp. ISSN 0893-4983.
DOŠLÁ, Zuzana, Mariella CECCHI and Mauro MARINI. Half-linear equations and characteristic properties of principal solution. J. Differential Equations. 2005, vol. 208, No 2, p. 494-507, 15 pp. ISSN 0022-0396.
DOŠLÝ, Ondřej. Pseudoconjugacy criteria for half-linear second order differential equations. Miskocl Math. Notes. 2005, vol. 6, No 2, p. 161-172. ISSN 1586-8850.
DOŠLÁ, Zuzana. Principal solutions and minimal sets of quasilinear differential equations. Dynamics Systems and Applications. 2004, vol. 13, No 1, p. 223-234. ISSN 1056-2176.
DOSLY, Ondrej and Jaroslav JAROS. A singular version of Leighton's comparison theorem for forced quasilinear second order differential equations. Arch. Math. 2003, vol. 39, No 4, p. 335-349. ISSN 0044-8753.
DOŠLÝ, Ondřej. Half-linear second order differential equations: oscillation theory and principal solution. Stud. Univ. Žilina Math. Ser. 2003, vol. 17, No 1, p. 69-78. ISSN 1336-149X.
DOŠLÝ, Ondřej and Jana ŘEZNÍČKOVÁ. Regular half-linear second order differential equations. Arch. Math. Brno, 2003, vol. 39, No 3, p. 233-245. ISSN 0044-8753.
DOŠLÝ, Ondřej. Qualitative theory of half-linear second order differential equations. Math. Bohemica. Praha, 2002, vol. 127, No 2, p. 181-195. ISSN 0862-7959.
HILSCHER, Roman. Inhomogeneous quadratic functionals on time scales. Journal of Mathematical Analysis and Applications. USA: Acad.Press, 2001, vol. 253, No 2, p. 473-481, 8 pp. ISSN 0022-247X.
DOŠLÝ, Ondřej, Martin BOHNER and Roman HILSCHER. Linear Hamiltonian dynamic systems on time scales: Sturmian property of principal solution. Nonlin. Anal. Atlanta, 2001, vol. 47, No 2, p. 849-859. ISSN 0362-546X.
HILSCHER, Roman. Positivity of quadratic functionals on time scales: necessity. Mathematische Nachrichten. Berlin: WILEY-VCH Verlag, 2001, vol. 226, No 1, p. 85-98. ISSN 0025-584X.
HILSCHER, Roman. Reid roundabout theorem for symplectic dynamic systems on time scales. Applied Mathematics and Optimization. New York: Springer-Verlag, 2001, vol. 43, No 2, p. 129-146. ISSN 0095-4616.
DOSLY, Ondrej and Arpad ELBERT. Integral characterization of principal solution of half-linear second order differential equations. Studia Sci. Math. Hungar. Budapest, 2000, vol. 36, No 2, p. 455-469. ISSN 0081-6906.
HILSCHER, Roman. Linear Hamiltonian systems on time scales: positivity of quadratic functionals. Mathematical and Computer Modelling. Elsevier Science, 2000, vol. 32, 5-6, p. 507-527, 20 pp. ISSN 0895-7177.
DOŠLÝ, Ondřej. Principal solution of symplectic dynamic systems on time scales. In Electron. J. Qual. Theory Differ. Equ. Szeged: Proc. 6th Coll. QTDE, 2000, p. 1-14. ISSN 1417-3875.
HILSCHER, Roman. Spectral properties of general self-adjoint, even order differential operators. Mathematica Slovaca. Bratislava: Slovak Academy of Sciences, 2000, vol. 50, No 2, p. 165-186, 21 pp. ISSN 0139-9918.
HILSCHER, Roman. Disconjugacy of symplectic systems and positive definiteness of block tridiagonal matrices. Rocky Mountain Journal of Mathematics. 1999, vol. 29, No 4, p. 1301-1319, 18 pp. ISSN 0035-7596.
HILSCHER, Roman. Linear Hamiltonian systems on time scales: transformations. Dynamic Systems and Applications. Atlanta, USA: Dynamic Publishers,Inc., 1999, vol. 8, 3-4, p. 489-501, 12 pp. ISSN 1056-2176.
DOŠLÝ, Ondřej and Jan KOMENDA. Conjugacy criteria and principal solutions of self-adjoint differential equations (Conjugacy Criteria and Principal Solutions of Self-Adjoint Differential Equations). Archivum Mathematicum. Brno: MU Brno, 1995, vol. 31, No 3, p. 217-238. ISSN 0044-8753.
DOŠLÝ, Ondřej. Principal solutions and transformations of linear Hamiltonian systems. Archivum Mathematicum. Brno: MU Brno, 1993, vol. 28, No 1, p. 113-120. ISSN 0044-8753.