
Practical Experience with IPFIX Flow Collectors

Petr Velan
CESNET, z.s.p.o.

Zikova 4, 160 00 Praha 6, Czech Republic
petr.velan@cesnet.cz

Abstract—As the number of Internet applications grows, the
number of applications that use data encapsulation increases as
well. Flow monitoring using NetFlow version 5 or 9 is only able
to analyze the encapsulating protocol, therefore it becomes too
limited to detect new threats. For this reason, more thorough
knowledge of such traffic is needed. The IPFIX protocol can
be used in such situations, because it provides enough flexibility
for monitoring tools to be extended by new elements. Along with
greater flexibility, IPFIX support results in a higher performance
footprint on collectors and tools for querying the collected data.
Currently, there is a lack of flow collection frameworks with
IPFIX support that would allow flow data to be extended. The
aim of this paper is to compare open-source flow collectors that
provide support for the IPFIX protocol. We focus on evaluating
performance of query tools and the level of IPFIX support
provided by the collection frameworks.

I. INTRODUCTION

The amount and complexity of network traffic are con-
stantly growing and network monitoring is therefore crucial
for management of large networks. Flow monitoring is often
used for this purpose, because it is able to handle large volumes
of traffic, which is possible due to its distributed architecture.
In the most common configuration, flow records containing
aggregated information about whole connections are created
by flow exporters and sent to a collector using the NetFlow [1]
protocol. NetFlow v9 [2] is currently the most popular version
of the protocol, because it defines a large set of field types
that can be used for flow description. However, there is no
support for any extensions and thus no new field types could
be created as needed. This problem is solved in the IPFIX [3]
protocol, which is a next generation of NetFlow. IPFIX allows
definition of enterprise elements that can be used to enrich the
flow records with new information.

In the IPFIX protocol, field types are known as Information
Elements. Further in the paper, we will refer to them as
elements for the sake of brevity. IPFIX extends NetFlow v9 by
adding new elements while preserving the old ones to maintain
compatibility. Moreover, IPFIX uses Private Enterprise Num-
bers to define enterprise elements. The Private Enterprise Num-
bers are assigned to organizations by IANA [4], therefore each
organization can define its own enterprise elements without a
risk of collisions.

The IPFIX enterprise elements are used to gain more infor-
mation about individual flows. This provides better understand-
ing of the traffic in the network, for example by adding DNS
payload to DNS queries or by adding geolocation to the flows.
The support of IPFIX enterprise elements is therefore crucial
for a future development of advanced flow-based network
monitoring systems. Unfortunately, IPFIX support provided by

the currently used collection frameworks is rather limited and
is not sufficient for this purpose.

Higher flexibility of IPFIX protocol often affects data
storage format of IPFIX collection frameworks, since the
collectors must be able to store newly defined elements trans-
parently. This can have non-negligible impact on performance
of data processing tools and should be taken into account when
choosing IPFIX collection framework.

The goal of the paper is to present a comparison of the
most widely used flow collection frameworks with IPFIX
support. The comparison should provide information to help
with choosing the right framework to suit specific needs, which
can arise when flow collection solution requires flexibility of
the IPFIX protocol. We are looking for collection frameworks
that would enable us to add new elements to flow records,
store them and use them in future data mining. We limit the
selection of the frameworks to those that are provided as open-
source, so that we can use them freely. In particular, we answer
the following questions:

1) Which open-source IPFIX collection frameworks are
available?

2) What is the level of IPFIX support that is provided
by each collection framework?

3) What is the performance of query tools that come
with the collection frameworks?

4) To what extent are the query tools in collection
frameworks extensible?

To answer these questions, we need to find out which
common collection frameworks provide IPFIX support. We
will focus on non-commercial collectors with a freely available
source code. Some of the chosen frameworks were presented
at the IPFIX Interoperability Event [5] that took place in
May 2011, others are known to us from our own experience.
After that, we will study documentation of the collectors to
determine the level of the support and we will verify the results
in practice. For that purpose, we will deploy the evaluated
collectors on a dedicated machine and use them to store
IPFIX flows. Then we will use the stored data to measure the
performance of query tools provided by each of the collection
framework.

The rest of the paper is structured as follows. In Section II
we survey the most common collection frameworks with
IPFIX support and select collectors relevant to our research.
Section III discusses the extent of IPFIX support provided
by chosen collectors. The performance of the query tools is
described in Section IV. Section V is dedicated to comparison
of extensibility of query tools in collection frameworks. The
paper is summarized in Section VI and conclusions are drawn.

II. IPFIX COLLECTION FRAMEWORKS

There are several collection frameworks that provide some
level of IPFIX support. One of them is ntop [6], which is
a tool for traffic analysis with support for NetFlow a IPFIX.
The primary purpose of ntop is to show local network usage.
Therefore it works as a combination of an exporter and a
collector, where the exporter is processing data on local ma-
chine. However, it is possible to use the collector and exporter
features separately to collector flow data from other exporters
or to export flows to another collector. The tool provides Web
interface, which enables sorting and aggregating network data
by various criteria and can be also used for configuration
and administration of the ntop. The Web interface also shows
network data statistics, which are persistently stored in the
RRD format, which is the only persistent storage that ntop
provides.

From the same authors as ntop comes nProbe [7], which is
an extensible NetFlow exporter and collector. It was designed
to be deployed in embedded environments, so it has no Web
interface. Exporter mode, collector mode and proxy mode are
available in nProbe. The proxy mode is designed to receive
and resend the flow data in another version of NetFlow format,
including IPFIX. Every mode allows storage of the processed
flow data to disk in MySQL, text, binary or FastBit [8] format.
nProbe provides full support for IPFIX Private Enterprise
Numbers and variable length encoding.

Similar architecture to nProbe provides Vermont [9]. Its
primary purpose is to be a flow exporter, but it also provides
features for extensive flow manipulation and it can also be
used as a proxy for receiving, processing and resending flow
data in NetFlow and IPFIX formats. The flow processing is
done using different plugins, which are able to do sampling,
anonymization and other tasks. There are also plugins that
allow storage of the processed flows to MySQL and Oracle
databases.

The rest of the collection frameworks do not include flow
exporters. The SiLK [10] framework is a collection of more
than fifty tools that are designed to capture flows in NetFlow
or IPFIX format and store them for later usage. SiLK uses its
own format to store the flow records which also supports data
compression. This approach allows it to be more distributed,
because it has one tool to process incoming flows and resend
the transformed data to another tool, which handles the actual
storage. Basic data classification is done during the storage, so
that the flows are sorted into different classes based on various
properties. The data in the classes can be queried by multiple
tools. Each is dedicated to a specific task, so there are tools for
filtering stored data, for grouping the results and for formatting
the output. Together the whole framework provides a complete
solution for flow data management.

Another collection framework is called nfdump [11]. Un-
like SiLK, nfdump provides one tool for a flow data collection
and storage and one tool that can issue queries on the stored
data. In addition, there are several other tools that can be used
for resending the flows, anonymization, or management of old
flow data files. The format used to store flow data is specific
to nfdump and data compression is supported. The nfdump has
support for NetFlow and IPFIX protocols.

Each of the mentioned frameworks was designed to work

with NetFlow v9 and IPFIX support was added later. A
different approach is used by IPFIXcol [12], which is a
collection framework that was developed specifically for the
IPFIX protocol. The IPFIXcol is a framework that uses input
and output plugins to acquire desired functionality. Input
plugins receive data using different protocols and pass them to
the IPFIXcol core. The core performs basic data processing,
handles templates and passes the data to output plugins. The
output plugins can resend or store the data. This design is
flexible and allows the same data to be processed by multiple
plugins simultaneously, which can be used for example to store
the data in one plugin while creating real-time statistics in
another. Currently the IPFIXcol framework provides a storage
plugin and a query tool for FastBit database.

FastBit is a column-oriented database, therefore the same
IPFIX elements are stored in a single column, represented by
a single file. Different IPFIX template are stored in different
directories, which allows easy addition of new elements as
necessary. Another advantage of FastBit database is that it
provides support for compressed bitmap indexes, which are
used to speed up the data access. This results in higher
performance of the query tools that use the FastBit database.

To the best of our knowledge, the presented open-source
IPFIX collection frameworks are currently the only ones that
are actively developed and maintained. We have deployed
flow exporters on all external links that connect our network
(CESNET – Czech national research and education network)
with others. All of the links are high-speed (10 Gbps), so
we distribute the load by separating exporters from collector.
Stored flows are further processed at the collector, to provide a
threat detection or a long term statistics. Collection frameworks
that match our setup are nfdump, SiLK and IPFIXcol. We
will use IPFIXcol with the FastBit output plugin. The ntop
is excluded since it does not store raw flow data. The reason
not to include nProbe and Vermont in our comparison is that
both are flow exporters by design. There are also performance
issues when using DBMS for flow data storage, as shown
in [13]. Although the FastBit support provided by nProbe
would be beneficial, because it allows storage of enhanced
flow records, the FastBit support is not included in the freely
available version. Moreover, the flexibility of flow data storage
based on fastbit FastBit is described as a part of IPFIXcol.
Although we will not compare the performance of Vermont in
this work, since it would duplicate the [13], we will include it
in the comparison in Section III.

III. IPFIX SUPPORT ASSESSMENT

In this section, we discuss the level of IPFIX support
provided by each collection framework. Since there are many
IPFIX elements already defined by IANA [14], it is important
to know whether the frameworks are able to store and process
them. As we described earlier, we are looking for ways of
putting additional information to flow records in order to gain
a greater understanding of the traffic in our network. Therefore
the extensibility of the frameworks is significant and we need
to study it to find out whether the frameworks support this
goal. Table I lists the software used along with its version.

TABLE I. VERSIONS OF THE SOFTWARE USED

Software name Version

nfdump 1.6.6
SiLK 2.5.0
IPFIXcol 0.5.1
FastBit SVN revision 532

A. IPFIX Elements Support

Every framework supports basic flow information, such as
source and destination IP addresses and ports, protocol, flow
timestamps or duration, TCP control bits, number of bytes and
packets. In addition to these, other elements are supported by
each framework, the Table II shows a basic comparison of
the additional element support. It is based on documentation,
source code and our practical experience.

In IPFIXcol, the extent of the supported IPFIX elements
is limited only by output plugin in use, because the plugin
is provided with all of the received data. The FastBit output
plugin is able to store any IPFIX element defined by IANA,
with the exception of elements with octetArray, basicList,
subTemplateList and subTemplateMultiList data types. The
octetArray support is planned in future releases of the plugin,
however, the current level of IPFIX support already allows
most of the IPFIX elements to be stored, since a string type
can be often used instead of octetArray. The list types are used
only as generic elements and no special meaning is assigned
to them yet.

The SiLK framework supports 29 of the IANA defined
elements, which are stored as 14 SiLK elements. The reason
for this is that sometimes different IPFIX elements are used
for the same information. The elements that define flow start
and flow end timestamps are a good example, since there are
5 elements for one timestamp, each using different units. In
addition to the defined elements, SiLK is able to process some
enterprise elements as well. These elements are exported by
YAF [15] and are used to identify the exporter, flow type and
application, or to provide more detailed information about TCP
flags. YAF is a flow exporter that is developed by same authors
as SiLK, so that the tools are adapted to work well with each
other.

Even more elements are supported in nfdump. It is able
to store 45 different IANA defined IPFIX elements, all of
them compatible with NetFlow v9. Apart from these, there
is support for 9 elements that were defined in NetFlow v9 and
that are marked as reserved in IPFIX. The last element that
can be stored in the nfdump data files is the IP address of
an exporter. IPFIX support in nfdump should be transparent,
so that it should process IPFIX elements in the same way
as NetFlow, but the support is still experimental, so that for
example sampling for IPFIX is not implemented yet.

The Vermont framework uses database systems to store
flow data. Since data storage is not the primary purpose of
Vermont, the list of supported elements is rather short. On the
other hand, Vermont enables storage of reverse elements as
well, so that the flows that represent both directions of the
communication can be stored as one record. Apart from this,
Vermont is also able to store exporter identifier and maximum
packet gap. Although the number of supported elements is

TABLE II. SUPPORTED IPFIX ELEMENTS

Element ndump SiLK Vermont IPFIXcol

Reverse elements no no yes yes
Flow end reason no yes no yes
Vlan ID yes yes no yes
Next hop IP yes yes no yes
Forwarding status yes no no yes
SNMP yes no no yes
Autonomous sys. yes no no yes
MPLS yes no no yes
Exporter IP yes no no yes
BGP Next Hop IP yes no no yes
Mac addresses yes no no yes
Flow direction yes no no yes
Enterprise elements no limited no yes

limited, the ability to store bidirectional flows is not present
in SiLK nor nfdump.

B. Collection Framework Extensibility

While it is important for collection frameworks to have a
good support of basic IPFIX elements, we are interested in
the extensibility of the collectors even more. One of the real-
world requirements for an IPFIX flow collector is the ability
to process and store new elements on demand without any
reconfiguration.

We have already shown that IPFIXcol has support for
almost any IPFIX element, but the collector is not limited to
the defined elements only. Since it uses flexible data storage,
it is able to process and store even enterprise elements, as
long as the definition of the elements type is provided. Once
IPFIXcol knows the data type of a new element, it can store it
accordingly using the FastBit database. The SiLK framework
does not provide any such features, the described element
set is strictly determined by the data file format. The only
way of affecting the data format is to compile the SiLK with
IPv6 support, which makes the IP fields big enough for IPv6
addresses. Although Vermont uses a relation database to store
the data, the set of elements that can be stored is fixed as well.
The nfdump uses a different approach. Since it provides a lot
of elements, storing all of them in each flow record would be
inefficient and would consume too much disk space. Instead,
nfdump separates the additional elements to extension sets,
which can be used as needed. This allows only the elements
that are actually used to be stored, therefore saving disk space.
Although it is not possible for users to define new extension
sets, the authors are able to extend the data file format with
new elements without breaking the backward compatibility.

IV. QUERY TOOL PERFORMANCE

In this section we compare the performance of query tools
that are provided by each collection framework. We measure
query response time of the tools on a defined set of queries.
The response time is measured as time between the start of
the query and a complete result set retrieval, although the
results are not printed on the screen. The queries that were
issued on the data set are shown in Table III. All queries in
Table III were translated into the specific query language of
each collection framework. Query Q1 returns the total sum of

TABLE III. MEASUREMENT QUERIES

Q1 SELECT count(*), sum(packets), sum(bytes) FROM dataset
Q2 SELECT count(*) FROM dataset WHERE dst port = 53
Q3 SELECT date start, protocol, src IPv6, dst IPv6, src port, dst port, packets,

bytes FROM dataset WHERE dst port = 53 AND ip version = 6
Q4 SELECT src IPv4, packets, bytes, count(*) FROM dataset WHERE

ip version = 4 GROUP BY src IPv4 ORDER BY bytes DESC LIMIT 5
Q5 SELECT protocol, src IPv4, dst IPv4, src IPv6, dst IPv6, src port, dst port,

packets, bytes, count(*) FROM dataset GROUP BY protocol, src IPv4,
dst IPv4, src IPv6, dst IPv6, src port, dst port

packets, bytes and flows in the data set. It measures response
time of aggregation performed on all flow records using only
a subset of columns. In nfdump, the results are already present
in the header of each file, but if any filter is applied, they
must be computed from the stored data. This is demonstrated
in Query Q2, where a number of flows with destination port
53 is computed. This is an example of a query where we are
only interested in the number of results. The third query lists all
IPv6 flows with destination port 53, so that the performance of
filtering and printing of the results is measured. The query Q4
is used to find the top five talkers grouped by source address,
which compares the performance of aggregation and ordering.
And finally, the query Q5 returns flows aggregated by standard
5-tuple, so that the aggregation performance is compared on
more data. The query in SQL notation from the Table III is
simplified, since otherwise we would have to perform a union
of queries for IPv4 and IPv6. To show how the tools cope
with increasing data sets, we ran the queries on increasingly
larger subsets of the data. The subsets were selected by time
intervals; first hour of traffic, first two hours, and so on, until
the full data set was used.

The performance of IPFIXcol using FastBit database is
measured using two different data storage settings. The first
has flow records stored in the order of their arrival, the other
uses FastBit reorder functionality to sort the data set by the
value of the columns, starting with columns with the least
value range. This process can significantly reduce the size of
bitmap indexes, because the compression is more effective with
ordered data. It can also increase performance of the queries,
since the data locality is increased by storing flows with same
element values near each other, therefore reducing the number
disk read operations that are needed to retrieve the results. In
our measurements, the index size was decreased to 26% of its
original size. Another advantage of having reordered data is
that it is also faster to build indexes on it. The comparison of
FastBit performance with nfdump and MySQL is done in [16].
However, the data set used for measurements was significantly
smaller compared to ours. We show that the FastBit library has
limits that were not reached by the authors.

The flow data that are used in the measurements are taken
from one of the CESNET metering points and contain 24 hours
of network data measured on a common working day. The data
set consists of almost 1.1 billion flow records and the size of
the whole data set in nfdump and IPFIXcol format is almost
52.7GB. However, the SiLK data set takes more than 67.2GB.
This is because the file format of the SiLK always stores the
same set of elements, regardless of whether they are used or
not. Therefore there are often unused elements stored in the
flow record, e.g. IPv6 addresses in IPv4 flow record.

00:00

02:00

04:00

06:00

08:00

10:00

12:00

14:00

 1 3 5 7 9 11 13 15 17 19 21 23

Q
ue

ry
 re

sp
on

se
 ti

m
e

(m
in

ut
es

)

Network data (hours)

IPFIXcol
IPFIXcol reorder

nfdump
SiLK

Fig. 1. Query Q1 Results

00:00

02:00

04:00

06:00

08:00

10:00

12:00

14:00

 1 3 5 7 9 11 13 15 17 19 21 23
Q

ue
ry

 re
sp

on
se

 ti
m

e
(m

in
ut

es
)

Network data (hours)

IPFIXcol
IPFIXcol reorder

nfdump
SiLK

Fig. 2. Query Q2 Results

The index created by FastBit on a destination port has
6.5GB on the original data and less than 1.7GB on the
reordered data. No compression is used in nfdump or SiLK,
since there is no support for compression in the FastBit library,
therefore we provide similar conditions for all tools. The com-
pression might actually increase the performance of nfdump
and SiLK queries, since the bottleneck for these tools is the
disk read operation. All measurements have been performed
on a machine with 2x Intel Xeon E5410 CPU working at
2.33 GHz, 12 GB DDR2 RAM and single SATA disk Seagate
Barracuda ES.2 with 7200 RPM.

The results of the measurements are shown in Figures 1,
2, 3, 4 and 5, where the response time for a given interval
of flow data is displayed. The queries were executed three
times and the graphs show average values with corresponding
error bars that represent standard error values. The nfdump
framework has a better response time by almost two minutes
for every query, as shown in Figures 1 to 5. The progress of
the graphs indicates that the difference might be even greater
with larger data sets. The comparison of IPFIXcol with and
without reordered data shows that the increased performance
is recognizable mainly in query Q4, shown in Figure 4, where
the data locality is helpful when accessing only records with
a specific port number.

The most notable results are gained from a comparison of
IPFIXcol with other frameworks. IPFIXcol reads only columns
necessary to answer a query, which results in lesser disk read
operations. This can shorten the response time significantly,
as shown in Figure 1. The result of query Q2 can be found
in Figure 2. The low response time of IPFIXcol is caused by
the use of bitmap index on a destination port. Since only a
number of matching flows is required, only the index needs

00:00

02:00

04:00

06:00

08:00

10:00

12:00

14:00

 1 3 5 7 9 11 13 15 17 19 21 23

Q
ue

ry
 re

sp
on

se
 ti

m
e

(m
in

ut
es

)

Network data (hours)

IPFIXcol
IPFIXcol reorder

nfdump
SiLK

Fig. 3. Query Q3 Results

00:00

04:00

08:00

12:00

16:00

 1 3 5 7 9 11 13 15 17 19 21 23

Q
ue

ry
 re

sp
on

se
 ti

m
e

(m
in

ut
es

)

Network data (hours)

IPFIXcol
IPFIXcol reorder

nfdump
SiLK

Fig. 4. Query Q4 Results

to be accessed, which is significantly faster than reading the
whole data set from disk.

The third query requires that the flow data are accessed. On
the other hand, the filter that selects only IPv6 flows is quite
restrictive. Therefore the FastBit indexes significantly help to
locate and read the necessary data only. As shown in Figure 3,
this causes IPFIXcol to answer the query almost instantly.
Moreover, since different templates are stored in different
directories, the query tool might be optimised to process only
directories which contain the column for filtered element. In
the fourth query, flows are read and aggregated. In Figure 4 we
can see that the query response time of IPFIXcol is increasing
as fast as that of the other tools. The reason is that there is
no index involved in the query other than the filtering on IPv4
protocol, which is not restrictive enough to help significantly.
However, not all of the elements are accessed, which results
in lower response times for IPFIXcol.

Figure 5 shows an example of a query, where IPFIXcol
is not nearly as effective as the other tools. The task of
aggregating all flows from a given time window requires a
lot of memory and the algorithms for the aggregation of large
data sets are not as optimized in FastBit library as in the
nfdump or SiLK. The aggregation of four hours takes about 20
minutes and for larger data sets the FastBit library runs out of
memory and ends the query execution. This is a problem of the
aggregation implementation in the FastBit library. Once this is
amended, this query should be answered in a time similar to
that of the other tools.

The queries demonstrated that the query tools utilizing
indexes for faster data access can achieve significantly lower
query response time. Therefore it is vital to choose adequate

00:00

04:00

08:00

12:00

16:00

20:00

24:00

 1 3 5 7 9 11 13 15 17 19 21 23

Q
ue

ry
 re

sp
on

se
 ti

m
e

(m
in

ut
es

)

Network data (hours)

IPFIXcol
IPFIXcol reorder

nfdump
SiLK

Fig. 5. Query Q5 Results

data storage for IPFIX collection framework in order to achieve
the best performance.

V. QUERY TOOL EXTENSIBILITY

The ability of collection frameworks to store new elements
was already discussed in Section III. This section describes the
extensibility of the query tools provided by the frameworks.
When support for a new IPFIX element is added to the
collector, the query tools must know the semantics of the
element in order to be able to work with it correctly. The
element must be properly formatted on output and the user
must be able to issue queries based on the elements value. For
example the TCP control flags are internally stored as byte
value, but the element is usually displayed and manipulated as
a set of letters corresponding to each of the bits.

IPFIXcol framework provides a query tool that works with
FastBit database. Since the data in FastBit database are stored
using basic integer types, strings or binary arrays, the tool
needs to have a definition of semantics for every element it
processes. For that reason, there is an XML configuration file
that allows specification of the columns that are later used in
the tool. Each column is either bound to an IPFIX element
or it can be a function of other columns. This approach is
used to create computed columns like bytes per seconds or
duration. The configuration file also allows specification of
multiple aliases for each column, by which the columns are
referenced on the command line of the query tool. The tool
comes with a predefined set of columns that can be easily
expanded, however, the list of semantics that can be assigned
to new elements is fixed.

SiLK allows its tools to be extended using Python plugins.
These plugins can be used to write filtering rules so that the
common operations can be simplified. It is also possible to
use the plugins to display new fields computed from existing
data, or to extend grouping and sorting functionality. Although
the plugins can be used to define semantics for new IPFIX
elements, the storage file format still restricts SiLK from being
able to add new elements on demand. Unlike IPFIXcol, nfdump
does not provide any means of extension of the existing set
of elements. Although its file format supports extensions, the
changes to support new elements have to be made to the
original source code. There is no way to define new semantics
for existing elements either, as can be done in SiLK, since
nfdump does not provide support for plugins.

VI. CONCLUSIONS

The paper presented an analysis of IPFIX support in current
open-source collection frameworks. The IPFIX protocol allows
definition of enterprise information elements, that can be used
to export additional information about flows. This can be
used to gain better knowledge of the network traffic. We
focused on the level of IPFIX support, extensibility and query
tools performance that are provided by the frameworks. We
have chosen to compare nfdump, SiLK and IPFIXcol, because
these collection frameworks provide their own tools to query
collected data and are freely accessible. Vermont framework
was also included in comparison of IPFIX element support,
even though it uses DBMS to store flow records.

The level of IPFIX support provided by each collection
framework varies. Vermont supports only a fixed set of IPFIX
elements, although the relational database could be used to
build a more flexible storage. The data storage used by SiLK
is not designed to handle flexible flow data and it supports
only a limited set of elements. The file format used by nfdump
provides support for extensions, thus it supports more IPFIX
elements than SiLK. Moreover, using the extensions to store
only the elements that are actually used, the nfdump file format
is also more disk space efficient. The IPFIXcol framework
uses FastBit database to store flow data. Since the database is
column-oriented, new elements are added as new files, so that
IPFIXcol is able to store not only IPFIX elements defined by
IANA, but also enterprise elements defined by user.

We measured the performance of query tools using a
defined set of queries designed to test different aspects of
the tools functionality. The results show that nfdump has a
better query response time than SiLK. In the comparison of
IPFIXcol with nfdump and SiLK, the IPFIXcol had a shorter
query response time in most of the queries. Therefore we can
deduce that when FastBit is not required to read all columns
or is able to use indexes for filtering, the time needed to
answer a query is significantly shorter. Only the algorithm for
aggregation is not as memory efficient as that of the other tools,
therefore when using multiple elements to aggregate a large set
of flow data, the FastBit library may run out of memory. This
is a known problem of the library and is likely to be fixed in
the future.

When choosing storage for flow data, it is necessary to
find a point of balance between data size, ease of access
and flexibility of the storage. The FastBit database is a good
example of this. The indexes speed up access to the data and
the storage format is very flexible, since it is column based.
On the other hand, the indexes occupy additional space and the
FastBit format uses a lot of small files, which is more difficult
to manage than a single file storage.

Query tools that come with SiLK can be extended by
plugins to support new filtering clauses and new semantics
for an existing set of elements. However, due to the fixed
data storage format, there is no support for addition of new
IPFIX elements. IPFIXcol allows addition of support for new
elements in queries, but only existing semantics can be used for
the elements. There is no support to add new IPFIX elements
or semantics to existing elements in nfdump, unless the source
code is modified.

The current level of IPFIX support provided by most of

the existing collection frameworks is limited to support only
some of the NetFlow v9 elements. The purpose of the IPFIX
is to provide means to use elements created by users, so that
the extended flow data can be used for more efficient network
monitoring. Only the IPFIXcol allows enterprise elements to
be stored and used efficiently in queries, although the lack
of data compression increases storage requirements. The other
collection frameworks need further development to be able to
fully support the IPFIX protocol.

ACKNOWLEDGEMENT

This material is based upon work supported by the “CES-
NET Large Infrastructure” project LM2010005 funded by
the Ministry of Education, Youth and Sports of the Czech
Republic.

REFERENCES

[1] Cisco Systems. Cisco IOS NetFlow. Accessed on 10 September 2012.
[Online]. Available: www.cisco.com/go/netflow

[2] B. Claise, “Cisco Systems NetFlow Services Export Version 9,” RFC
3954 (Informational), October 2004.

[3] B. Claise, “Specification of the IP Flow Information Export (IPFIX)
Protocol for the Exchange of IP Traffic Flow Information,” RFC 5101
(Proposed Standard), Internet Engineering Task Force, January 2008.
[Online]. Available: http://www.ietf.org/rfc/rfc5101.txt

[4] IANA. Accessed on 10 September 2012. [Online]. Available:
http://www.iana.org/about

[5] DEMONS IPFIX Interoperability Event – Final Report (2011).
Accessed on 10 September 2012. [Online]. Available: http://www.ietf.
org/proceedings/80/slides/ipfix-4.pdf

[6] L. Deri. ntop. Accessed on 10 September 2012. [Online]. Available:
http://www.ntop.org/products/ntop/

[7] L. Deri. nProbe. Accessed on 10 September 2012. [Online]. Available:
http://www.ntop.org/products/nprobe/

[8] Lawrence Berkeley National Laboratory. FastBit. Accessed on 10
September 2012. [Online]. Available: http://crd-legacy.lbl.gov/∼kewu/
fastbit/

[9] FAU Erlangen and TU München. Vermont. Accessed on 10 September
2012. [Online]. Available: https://github.com/constcast/vermont/wiki

[10] CERT Network Situational Awareness Team. SiLK. Accessed on
10 September 2012. [Online]. Available: http://tools.netsa.cert.org/silk/
index.html

[11] P. Haag. nfdump. Accessed on 10 September 2012. [Online]. Available:
http://nfdump.sourceforge.net

[12] P. Velan and R. Krejčı́, “Flow Information Storage Assessment Using
IPFIXcol,” in Dependable Networks and Services, ser. Lecture Notes
in Computer Science, R. Sadre, J. Novotný, P. Celeda, M. Waldburger,
and B. Stiller, Eds. Springer Berlin / Heidelberg, 2012, vol. 7279, pp.
155–158.

[13] R. Hofstede, A. Sperotto, T. Fioreze, and A. Pras, “The Network
Data Handling War: MySQL vs. NfDump,” in 16th EUNICE/IFIP WG
6.6 Workshop on Networked Services and Applications - Engineering,
Control and Management, Trondheim, Norway, ser. Lecture Notes in
Computer Science, vol. 6164. Berlin: Springer Verlag, June 2010, pp.
167–176.

[14] IP Flow Information Export (IPFIX) Entities. Accessed on 10
September 2012. [Online]. Available: http://www.iana.org/assignments/
ipfix/ipfix.xml

[15] CERT Network Situational Awareness Team. YAF. Accessed on
10 September 2012. [Online]. Available: http://tools.netsa.cert.org/yaf/
index.html

[16] L. Deri, V. Lorenzetti, and S. Mortimer, “Collection and Exploration
of Large Data Monitoring Sets Using Bitmap Databases,” in Traffic
Monitoring and Analysis, ser. Lecture Notes in Computer Science,
F. Ricciato, M. Mellia, and E. Biersack, Eds. Springer Berlin
Heidelberg, 2010, vol. 6003, pp. 73–86.

