Toward Real-time Network-wide Cyber Situational Awareness

Mini-conference NOMS 2018, April 27, 2018, Taipei, Taiwan

Tomas Jirsik, Pavel Celeda

Institute of Computer Science & Faculty of Informatics, Masaryk University, Czech Republic

Cyber Situational Awareness

Network-wide Cyber Situational Awareness

Perception of the elements in the computer network within a volume of time and space, the comprehension of their meaning and the projection of their status in the near future. (Endsley 1998)

Specifics

- Cyber environment no borders, scale free
- Perception only by sensors
- Performance small resources to harm, huge resources to protect
- Attackers— takes the advantage

SITUATION AWARENESS

Perception

of data and the elements of the environment (Level 1)

Comprehension

of the meaning and significance of the situation (Level 2)

Projection

of future states and events

(Level 3)

Cyber Situational Awareness

Motivation

Data overload, meaning underload

- An operator is overwhelmed with a raw data
- Big data in computer networks

Reaction speed

- Automated attacking tools vs human defender
- Speed of events
- Speed of processing

Heterogeneous Tools

- Various tools for different network data
- Both for data collection, analysis and visualization
- Performance is the issue

Requirements

Performance

A framework should be able to process and analyze large volumes of the data at high speeds.

Universality

A framework should be able to gather and process data from various data sources.

Context

• A framework should be able to offer **complete information including context** relevant to the information instead overwhelming a user with a flood of raw data.

Dynamic Level of Detail

• A framework should be able to provide a dynamic level of detail both **in time and information domain**.

Reaction Time

• A framework **should minimize the time** needed for analysis to increase the speed of reaction.

Framework for Real-Time Cyber Situational Awareness

Stream4Flow: Prototype Implementation

Stream4Flow: Prototype Implementation

Tomas Jirsik, Pavel Celeda, Masaryk University, Brno

Discussion

Performance

- Scalability and throughput
- Data streams
- Distributed computing

Universality

- Normalization
- Data Message Bus

Dynamic Level of Detail

- High granularity in orders of seconds
- Map-reduce principle for host monitoring

Context

- Universality and performance enables context
- Correlation of events

Reaction Time

On-the-fly processing

Further Remarks

- High granularity modifies data
- Deduplication

QUESTIONS?

THANKS FOR YOUR ATTENTION!

@csirtmu

jirsik@ics.muni.cz

