
STANSE: Bug-finding Framework
for C Programs

Jan Obdržálek, Jiří Slabý and Marek Trtík

Masaryk University, Brno, Czech Republic
{obdrzalek,slaby,trtik}@fi.muni.cz

Abstract. Stanse is a free (available under the GPLv2 license) mod-
ular framework for finding bugs in C programs using static analysis. Its
two main design goals are 1) ability to process large software projects
like the Linux kernel and 2) extensibility with new bug-finding techniques
with a minimal effort. Currently there are four bug-finding algorithms
implemented within Stanse: AutomatonChecker checks properties
described in an automata-based formalism, ThreadChecker detects
deadlocks among multiple threads, LockChecker finds locking errors
based on statistics, and ReachabilityChecker looks for unreachable
code. Stanse has been tested on the Linux kernel, where it has found
dozens of previously undiscovered bugs.

1 Introduction

During the last decade, bug-finding techniques based on static analysis have
finally come of age. One of the papers to really stir interest was [2], showing that
static analysis can efficiently find many interesting bugs in real-world code. This
work eventually led to a successful commercial tool called Coverity [10]. Over
the years, several other successful tools, like CodeSonar [9] orKlocwork [12],
appeared. However, such fully-featured tools are neither free to obtain, nor is
their code available (e.g. for developing new algorithms or tailoring the existing
tools to specific tasks). The existing free tools are usually severely limited in what
they can do (e.g. Uno [15], Sparse [14], Smatch [13]). One notable exception
is FindBugs [5, 11], a successful tool working on Java code. Stanse is intended
to fill this gap for the C language. It can be seen in two ways:

1. Stanse is a robust framework (written predominantly in Java) for imple-
menting diverse static analysis algorithms. An implemented algorithm can
be immediately evaluated on large real-world software projects written in
C as the framework is capable to process such projects (for example, it can
process the whole Linux kernel). An implementation of such an algorithm
within the framework is called a checker.

2. As Stanse already contains four checkers, it can be also seen as a working
static analysis tool.

The paper is structured as follows. Section 2 describes the functionality pro-
vided by the framework, while Section 3 is devoted to the four existing checkers.

In Section 4 we present some results of running Stanse on the Linux kernel.
The last section summarises the basic strengths of Stanse and mentions some
directions of future development.

2 Framework Functionality

The Stanse framework is modular and fully open. It is designed to allow static
analysis of large software projects like Linux kernel. Furthermore it is aimed to
reduce effort when implementing a new static analysis technique. Architecture of
the framework is depicted in Fig. 1, and is more or less standard. The bug-finding
algorithms are implemented as checkers, and will be described in more detail in
Section 3. In this section we focus on the functionality of the framework itself,
describing only the non-standard or for some other reason interesting features.

Checker Checker

Call

graph

Internal representation

AST CFG . . .

Checkers’ interface

tracing

report

error

GUI

data file

Checker

.preprocpreprocessor.C

Error

report

C parser

libraries

navigation

Code

Fig. 1. Stanse framework architecture.

2.1 Configuration

The Stanse framework contains data structures capturing a configuration of an
analysis to be performed. We always need to know what source files to analyse
and by what checkers. That information we call configuration.

There are several ways how to tell Stanse which source files to analyse.
Besides the standard possibilities (a given file, all files from a given directory,
all files listed in a list), Stanse can also derive all the necessary information
from a project Makefile. In this case, Stanse also remembers compiler flags for
preprocessing purposes. This functionality is inspired by the Sparse [14] tool.

The user must also specify the checkers which should be run on the config-
ured source files. There can be many checkers running simultaneously in Stanse.
However they cannot share any data and proceed independently. Checkers them-
selves can also be configured through their own configuration files. The configura-
tion can be passed to the Stanse framework either via command line arguments,
or using the graphical interface.

2.2 Parsing Source Files

The Stanse framework can process source files written in C, more specifically
in the ISO/ANSI C99 standard together with most of the GNU C extensions.
This allows Stanse to process software projects like the Linux kernel. We are
currently working on support of other languages, in particular C++, a prototype
implementation for which is included in the distribution. The parsing pipeline,
including a preprocessing the source files by the standard GNU C preprocessor,
is depicted at the bottom in Fig. 1. It is important to note that we do not parse
the source files in a sequence one by one as they appear in a configuration. Since
we use streaming (which we discuss later), the pipeline is applied as needed for
each individual source file.

The parser used in Stanse is generated using the AntLR tool from our
own annotated C grammar. The reason for us to write our own parser was that
at the time we started to develop Stanse we could not find free parser which,
while being suitable for our purposes, would be able to parse most of the GNU
C. (Linux Kernel makes heavy use of GNU C language extensions.) There is
one notable exception: Clang, which is slowly improving and will be able to
handle the Linux kernel in the near future. However, in its current form it still
contains bugs and cannot be used reliably. Our plan is to switch from our parser
to Clang once it becomes stable and feature complete.

Also, one may object that we could use the parser from the GNU compiler
(GCC). Unfortunately this parser, and most importantly its internal structures,
is not suitable for our purposes. For example the CFG is built on the top of RTL
or tree representation (we encourage the reader to look into the GCC manual
where these are described).

2.3 Program Internal Representation

Once the code is parsed, it is represented using Stanse’s internal structures:
a call graph among functions, a control flow graph (CFG) for each function,
and an abstract syntax tree (AST) for the whole file. Subtrees in the AST are
referenced from appropriate CFG nodes. We show these structures in the middle
of Fig. 1. All these structures can be dumped in a textual or graphical form.

Since we aim at large software projects consisting of hundreds or thousands
of modules (compilation units), it is often impossible in practice to store the cor-
responding internal structures in the memory all at the same time. The Stanse
framework therefore applies automatic streaming of the internal structures. This
is currently performed on a module basis. Instead of parsing all source modules
in the beginning, a module is streamed in only when Stanse needs to access
some internal structure belonging to the module. In other words, the internal
structures are constructed on demand, in a lazy manner.

If the memory occupied by internal structures exceeds a given limit, some
internal structures have to be freed before another module is streamed in. The
structures to be freed are selected using the LRU (least recently used) approach:
Stanse discards all internal structures of the module whose structures are not
accessed for the longest time. If the discarded structure is accessed again later,
the corresponding module is streamed back in. Both laziness of internal struc-
tures and streaming are completely invisible to checkers.

In the current implementation of streaming, each source file streamed out
from the memory is completely discarded. Stanse does not back up already
parsed internal structures into auxiliary files before discarding. As a consequence,
when internal structures of the discarded file are needed again, Stanse starts the
parsing pipeline of the file from scratch to recreate requested internal structures.
Although loading of previously parsed internal structures from auxiliary files
would speed up the streaming process, profiling of Stanse’s performance on the
Linux kernel has not shown streaming to be a performance bottleneck. However
this could be easily changed if streaming performance becomes a problem in the
future.

2.4 Pointer Analysis in Stanse

Since C programs tend to heavily use pointers, it almost always becomes a ne-
cessity to use some form of pointer analysis. There are many different known
approaches to pointer analysis, differing in speed and accuracy. As each bug-
finding/program analysis technique may have different requirements regarding
pointer analysis, a framework like Stanse should ideally implement several dif-
ferent pointer analysis techniques and provide them to its checkers.

Nevertheless, the Stanse framework currently provides just two pointer anal-
yses: Steensgaard ’s [7] and Shapiro-Horowitz ’s [6]. Both analyses are may anal-
yses – they compute an over-approximation of an accurate solution. The Steens-
gard ’s analysis is very fast and it is widely used in practice. On the other hand it
is not very accurate. The Shapiro-Horowitz ’s analysis allows parametrisation be-
tween Steensgard ’s and Andersen’s analyses. One can therefore balance between
speed of Steensgard ’s analysis and accuracy of Andersen’s one.

2.5 Matching Language Constructs

Many static analyses change their internal state only on some subset of program
expressions. For example, when finding race conditions in a parallel program,

one may only focus on expressions involving synchronisation, while ignoring all
others. The Stanse framework therefore provides a specification language for
determining a set of program expressions.

The language defines a collection of patterns. Each pattern is supposed to
identify a single specific kind of sub-trees in AST of analysed program. A pattern
itself is therefore also a sub-tree of AST, where some of its vertices are “special”.
They allow to define a set of possible sub-trees at that vertex.

This is, however, not the only possible approach. For example, in the METAL [1]
specification language, a C expression can be directly parametrised to define a
set. The solution we implemented exploits the fact that checkers in Stanse work
with AST intensively, and therefore identifying expressions in terms of AST is
very practical.

2.6 Traversing Internal Representation

Although a checker may need to work with the internal structures in an arbitrary
way, most checkers walk through CFGs using some standard strategy. To prevent
unnecessary reimplementations, the most important and heavily used traversal
methods are implemented directly inside the framework. With this functionality,
one can implement a new checker (or its part) by specifying

– whether it should go through CFGs forwards or backwards, breadth-first or
depth-first,

– whether the interprocedural walk-through should be performed or not (if
not, the function calls are ignored), and

– a method (callback) to be called for each visited node in a CFG.

This makes implementation of new algorithms extremely simple.
For example, when a checker needs to implement a forward flow-sensitive

analysis, it may ask the Stanse framework to traverse paths in CFGs in for-
ward depth-first manner. This can be implemented by a single call to a function
traverseCFGToDepthForward, which takes as an argument a CFG and a sub-
class of Stanse class CFGPathVisitor. In this class the checker defines the
action which should be taken whenever a CFG node is visited (already in the
requested order). The checker implements the action in a method visit of the
subclass.

In addition, for those interprocedural analyses which do not construct sum-
maries Stanse provides an automated traversal among different CFGs according
to function calls (involving automated parameters passing and value returning).
Again, this can be done using a single call to the Stanse framework.

The functionality described in this section is shown in Fig. 1 as “Code navi-
gating libraries”.

2.7 Support for Function Summaries

Interprocedural analyses typically build function summaries. Unfortunately, these
summaries may differ from one analysis to another. Nevertheless, quite common

part in building many summaries is passing formal and actual parameters to call
sites and mapping return values to appropriate variables. Therefore, the Stanse
framework provides classes simplifying the parameter passing and values return-
ing for checkers. These classes also provide a conversion of a given expression
in the caller into an equal expression in the called function. The conversion can
also be required in the opposite direction, i.e. for returned values.

2.8 The Concept of Checkers

In the Stanse framework a checker is an implementation of some concrete static
analysis technique. Each checker has an access to a shared internal structure of
analysed source files. They are also provided with an access to the algorithms
providing navigation in those structures. This is done by an interface between
checkers and internal structure and libraries of the framework. The interface is
depicted in Fig. 1 right bellow the checkers.

The checkers are integrated in the framework of Stanse using concrete fac-
tory design pattern. Therefore, to insert a new checker to the framework one
needs to implement generic checker interface and register it to the checkers’ fac-
tory of the framework. Then it gains a full access to the features of the framework
accessible through the discussed interface.

It is very easy to integrate a new checker into Stanse. The process requires
only three simple steps to be fully functional. The first step is to create a subclass
of Stanse abstract class Checker, say MyChecker. The most important method
to implement is check. There the analysis algorithm should be implemented.

The second step is to integrate the newly created class into the framework.
This means implementation of MyCheckerCreator, a subclass of CheckerCreator
abstract class. And the final step is to register the class MyCheckerCreator. It
comprises adding a line registerCheckerCreator(new MyCheckerCreator())
at the end of CheckerFactory.java.

2.9 Processing Errors

Once a checker finds an error, it reports the error back to the framework in the
form of an annotated error trace - a path in the analysed code demonstrating this
error. A datatype is provided in the Stanse framework to describe an error. In
the framework there are then several possibilities how to present the error traces
back to the user of Stanse: they can be printed to the console, displayed using
a built-in error trace browser in the GUI (see Fig. 2), or saved to an external file
in XML format. This XML file has a wide variety of possible applications. For
example, we supply a tool transforming the XML file into an SQLite database.
The database is supplemented with a web interface allowing to browse errors in
the database via a web browser. Using the web browser or the built-in graphical
error browser, one can mark errors as real bugs or false positives. Stanse also
provides various statistics of errors like number of errors per checker, frequency
of errors of the same kind, percentage of false positives (based on user feedback).

Fig. 2. Error trace browser in the Stanse GUI.

Error reporting and tracing pipeline is depicted to the right of interface and
internal representation of Fig. 1.

3 Checkers

In this section we briefly describe the four currently available checkers. All four
checkers are provided with sample configuration so that they can be used in-
stantly, however they can be configured differently when necessary.

AutomatonChecker is heavily influenced by [2]. It takes, as an input, a set
of finite-state automata that describe the properties we want to check, patterns
which match against the code to be checked, and finally transitions, i.e. pairing
of patterns and automaton state changes. Properties like locking discipline, inter-
rupt management, null pointer dereference, dangling pointers and many others
can be described this way.

An example of the locking checker is presented in Fig. 3. The automaton
starts in the unlocked state (U) and a transition is made when there is an out-
going edge from the current state with a pattern matching the action currently
performed by the analysed program. E.g. if there is an unlock action while the
automaton is in an unlocked state, an error is reported.

Compared to the implementation described in [2] and [4], our technique dif-
fers in several aspects. In particular, we do not use metacompilation, automata

Fig. 3. Automaton for locks checking

are not input-language specific (a pattern matching is used instead), and the
interprocedural analysis is done in the context of a single input file.

LockChecker accounts statistics about variable accesses. It also tracks which
locks are locked while each of the variable is accessed. Again both variable ac-
cesses and locks are specified by patterns.

Then, combining the information about accesses and locks held, it counts a
statistics in how many cases each variable is accessed while some lock is held.
If the difference is proportional, an error is reported. So if, for instance, some
variable is changed 99 times while some lock is held and in one case the lock
is not, this is reported as a possible error. The boundary is currently set to 70,
so that at least 70% of accesses must be under locks. The rest (30%) is then
reported. This work is based upon [3].

ThreadChecker aims to check for possible deadlocks in concurrent programs.
The technique is based on the notions of locksets of [8] and deadlock detection
by looking for cycles in resource allocation graphs (RAGs). ThreadChecker
first tries to identify the parts of the code which can run in parallel, as different
threads. This is performed by searching of functions instantiating threads (such
as pthread create). Or, for the Linux kernel, we also specify manually which
hooks may be run parallel.

Then the checker builds a set of dependency graphs for each such thread. A
dependency graph statically represents possible locksets during one execution of
a thread. Dependency graphs are then combined and transformed into RAGs. If
there is a circular lock dependency, RAG contains a cycle. In such case an error
is reported to the user.

ReachabilityChecker searches CFGs for unreachable nodes. These are then
reported as warnings or errors, depending on importance (e.g. superfluous semi-
colons are less important than unused branch). The primary goal of Reachabil-
ityChecker is to demonstrate the simplicity of a new checker implementation.
With a help of the framework features described in Subsection 2.6, the code
of the checker has less than 200 lines including the mentioned error/warning
classification and many strings and comments.

Checker Automaton Errors Real/classified
Found Real False pos. error ratio

Pairing 266 65 143 31.3 %
AutomatonChecker Pointers 86 48 37 56.5 %

Deadlocks 35 16 18 47.1 %
LockChecker 13 6 7 46.2 %
ThreadChecker 20 9 11 45.0 %
ReachabilityChecker 31 31 0 100.0 %

Overall 451 175 216 47.9 %

Table 1. Stanse results on the Linux kernel version 2.6.28.

Even though it is a very simple checker it was still able to find serious bugs
in the kernel. For example a superfluous semicolon can cause unexpected uncon-
ditional returns from functions like in the following code: if (cond); return;.

4 Results on the Linux Kernel

We have several reasons to choose the Linux kernel for testing Stanse: the kernel
is a large and freely available codebase, it fully exercises most of the features of
ISO/ANSI C99 and GNU C extensions, it is under constant development (there
is a constant income of new bugs), and the absence of bugs is of a great concern.

We applied Stanse, together with the four checkers described in the previ-
ous section, to the Linux kernel version 2.6.28. The AutomatonChecker was
configured with three automata describing the following types of errors:

– incorrect pairing of functions (imbalanced locking, reference counting errors)
– bugs in pointer manipulation (null dereference, dangling pointers, etc.)
– deadlocks caused by sleeping inside spinlocks or interrupt handlers

The running time of Stanse on a common desktop machine with two 2.5 GHz
cores and 4 GiB of memory was under two hours. The memory usage of the Java
process oscillated between 400 and 1000 MiB. The number of errors found by
the checkers is presented in Table 1. Let us note that ReachabilityChecker
actually found 751 errors, but 720 of them are of low importance (including 696
superfluous semicolons) and they are omitted from our statistics.

We have manually analysed all the found errors and classified them as real
errors or false positives (with an exception of 60 errors found by Automa-
tonChecker where we are not able to decide in a short time whether it is a
false positive or not). Note that the checkers do not produce any false negatives
(assuming there is no bug in the checkers’ implementation). The reason is that
all the checkers implement may analyses, overapproximating the set of error be-
haviours. The numbers of real errors, false positives and the ratio of real errors
to all classified errors can be also found in Table 1. The overall ratio of real
errors to all classified errors is not high: 47.9%. However, Stanse in the current

version does not have any thorough false positive filtering technique, which may
be implemented in future.

More than 70 of the 169 real errors have been reported to kernel developers
and fixed in the following kernel releases (the rest have been independently
discovered and reported by someone else or the incorrect code disappeared from
the kernel before we finished our evaluation of found errors). Some of the reported
bugs remained undiscovered for more than seven years (for illustration, see our
report at http://lkml.org/lkml/2009/3/11/380).

We have reported another 60 bugs found by Stanse in the subsequent ver-
sions of the kernel. This number is increasing every month.

4.1 Important Bugs found by Stanse

Although checkers currently implemented in Stanse are based on widely known
techniques, running them on the Linux kernel helped to uncover several impor-
tant bugs. In the text below we present two typical bugs discovered by Stanse,
each using a different checker.

AutomatonChecker Many bugs found by the AutomatonChecker trigger
only under specific conditions, however some of them may be visible to the user.
Consider this code excerpt taken from the 2.6.27 kernel, drivers/pci/hotplug/p-
ciehp core.c file, set lock status function:

mutex lock(&s l o t−>c t r l−>c r i t s e c t) ;
/∗ has i t been >1 sec s ince our l a s t t o g g l e ? ∗/
i f ((g e t s e conds () − s l o t−>l a s t em i t o g g l e) < 1)
return −EINVAL;

Note that the call to mutex lock function is followed by an if statement,
which returns immediately in the true branch, omitting a call to mutex unlock.
In fact this deadlock could be easily triggered by a user. It is sufficient to write
”1” to /sys/bus/pci/slots/. . ./lock file twice within a second.

ThreadChecker An example of non-trivial error which could not be found by
the AutomatonChecker. The code described here is from the 2.6.28 kernel,
file fs/ecryptfs/messaging.c.

There are three locks in the code, msg ctx->mux, which is local per context,
and two global locks – ecryptfs daemon hash mux and ecryptfs msg ctx lists mux.

Let us denote lock dependencies as a binary relation where the first compo-
nent depends on the second. I.e. lock(A) followed by lock(B) means dependency
B on A, and we write A← B.

1 int e c r yp t f s p r o c e s s r e s p on s e (. . .)
2 {
3 . . .
4 mutex lock(&msg ctx−>mux) ;
5 mutex lock(&ecryptfs daemon hash mux) ;
6 . . .
7 mutex unlock(&ecryptfs daemon hash mux) ;
8 . . .

9 unlock :
10 mutex unlock(&msg ctx−>mux) ;
11 out :
12 return rc ;
13 }

Here the two locks on lines 4 and 5 give msg ctx->mux← ecryptfs daemon hash mux.

14 stat ic int e c ryp t f s s end mes sag e l o ck ed (. . .)
15 {
16 . . .
17 mutex lock(& e c r yp t f s msg c t x l i s t s mux) ;
18 . . .
19 mutex unlock(& e c r yp t f s msg c t x l i s t s mux) ;
20 . . .
21 }
22
23 int e c rypt f s s end mes sage (. . .)
24 {
25 int rc ;
26
27 mutex lock(&ecryptfs daemon hash mux) ;
28 rc = ec ryp t f s s end mes sag e l o ck ed (. . .)
29 mutex unlock(&ecryptfs daemon hash mux) ;
30 return rc ;
31 }

At line 28, function ecryptfs send message locked is called from ecryptfs send message,
hence the locks at lines 17 and 27 generate lock dependency of ecryptfs daemon hash mux
← ecryptfs msg ctx lists mux.

32 int e c r y p t f s w a i t f o r r e s p o n s e (. . .)
33 {
34 . . .
35 mutex lock(& e c r yp t f s msg c t x l i s t s mux) ;
36 mutex lock(&msg ctx−>mux) ;
37 . . .
38 mutex unlock(&msg ctx−>mux) ;
39 mutex unlock(& e c r yp t f s msg c t x l i s t s mux) ;
40 return rc ;
41 }

Finally, this function introduces ecryptfs msg ctx lists mux ← msg ctx->mux.
Composing these results together the following circular dependency of these

three locks was found:

– msg ctx->mux ← ecryptfs daemon hash mux
– ecryptfs daemon hash mux ← ecryptfs msg ctx lists mux
– ecryptfs msg ctx lists mux ← msg ctx->mux

This issue was later confirmed as a real bug leading to a deadlock1.

5 Conclusions and Future Work

Stanse is a free Java-based framework design for simple and efficient imple-
mentation of bug-finding algorithms based on static analysis. The framework
can process large-scale software projects written in ISO/ANSI C99, together

1 http://lkml.org/lkml/2009/4/14/527

with most the GNU C extensions. Stanse does not currently use any new tech-
niques – its novelty comes from the fact that (to our best knowledge) there is
no other open-source framework with comparable applicability and efficiency.
We note that more than 130 bugs found by Stanse have been reported to and
confirmed by Linux kernel developers already. More information and the tool
itself can be found at http://stanse.fi.muni.cz/.

Future Work We plan to improve the framework in several directions. Firstly
we are currently working on C++ support. Furthermore we plan to provide
Stanse in the form of an IDE plug-in, e.g. for Eclipse and NetBeans. A lot
of work can be done in the area of automatic false alarm filtering and error
importance classification. Independently of developing new features, we would
like to speed up the framework as well. To this end we intend to replace the
current parser written in Java by an optimised parser written in C, to replace
the XML format of internal structures by a more succinct representation, to add
a support for function summaries, etc.

Acknowledgements Jan Kučera is the author of the ThreadChecker. We
would like to thank Linux kernel developers, and Cyrill Gorcunov for Stanse
alpha testing and useful suggestions. All authors are supported by the research
centre Institute for Theoretical Computer Science (ITI), project No. 1M0545.

References

1. A. Chou, B. Chelf, D. Engler, and M. Heinrich. Using meta-level compilation to
check FLASH protocol code. ACM SIGOPS Oper. Syst. Rev., 34(5):59–70, 2000.

2. D. Engler, B. Chelf, A. Chou, and S. Hallem. Checking system rules using system-
specific, programmer-written compiler extensions. In OSDI’00, pages 1–16, 2000.

3. D. Engler, D.Y. Chen, S. Hallem, A. Chou, and B. Chelf. Bugs as deviant behavior:
A general approach to inferring errors in systems code. ACM SIGOPS Oper. Syst.
Rev., 35(5):57–72, 2001.

4. S. Hallem, B. Chelf, Y. Xie, and D. Engler. A system and language for building
system-specific, static analyses. In PLDI’02, pages 69–82. ACM, 2002.

5. D. Hovemeyer and W. Pugh. Finding bugs is easy. In OOPSLA’04, pages 132–136.
ACM, 2004.

6. M. Shapiro and S. Horwitz. Fast and accurate flow-insensitive points-to analysis.
In POPL ’97, pages 1–14. ACM, 1997.

7. B. Steensgaard. Points-to analysis in almost linear time. In POPL ’96, pages
32–41. ACM, 1996.

8. J.W. Voung, R. Jhala, and S. Lerner. RELAY: static race detection on millions of
lines of code. In ESEC-FSE’07, pages 205–214. ACM, 2007.

9. CodeSonar. http://www.grammatech.com/products/codesonar/.
10. Coverity. http://www.coverity.com/products/.
11. FindBugs. http://findbugs.sourceforge.net/.
12. Klocwork. http://www.klocwork.com/products/.
13. Smatch. http://smatch.sourceforge.net/.
14. Sparse. http://www.kernel.org/pub/software/devel/sparse/.
15. Uno. http://spinroot.com/uno/.

